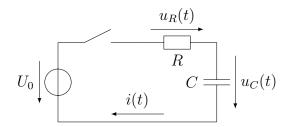
Nachname: Vorname: MatrNr.:


Klausur Programmieren 1

HAW-Hamburg, Fakultät Technik und Informatik, Department Informations- und Elektrotechnik
Prof. Dr. Robert Heß, 7.7.2015, Bearbeitungsdauer: 180 Min.

Erlaubte Hilfsmittel: Vorlesungsunterlagen, Lösungen aus dem Praktikum und $\mathrm{C/C}++$ Einführungsbücher.

Ergebnis: von 100 Punkten Note: Punkte.

1 Einleitung

Ein Kondensator C wird über einen Widerstand R auf die angelegte Spannung U_0 aufgeladen. Es sollen die Spannung am Kondensator $u_C(t)$, die Spannung am Widerstand $u_R(t)$ und der Strom durch den Stromkreis i(t) über einen betrachteten Zeitraum t_{Dauer} berechnet und ausgegeben werden. Die benötigten Formeln lauten:

$$u_R(t) = U_0 e^{-t/\tau}$$
 $u_C(t) = U_0 \left(1 - e^{-t/\tau}\right)$ $i(t) = \frac{U_0}{R} e^{-t/\tau}$ mit $\tau = RC$

Zu Beginn werden vom Benutzer die Kapazität C in Farad, der Widerstand R in Ohm, die angelegte Spannung U_0 in Volt und das Zeitintervall für die Berechnung t_{Dauer} in Sekunden abgefragt. Die Berechnungen sollen in 100 Schritten erfolgen, was zu 101 Zeitpunkten führt:

$$t_k = k t_{\text{Dauer}}/100$$
 für $k = 0, 1, 2, \dots, 100$

Die Ergebnisse sollen tabellarisch ein einen zweidimensionalen Vektor gespeichert und später ausgegeben werden. In jede Zeile sollen die Werte für t, $u_R(t)$, $u_C(t)$ und i(t) gespeichert werden.

2 Programmieraufgaben

Aufgabe 1 (5 Punkte)

Legen Sie im Hauptprogramm alle benötigten Variablen an. Vermeiden Sie unnötige Variablen und Redundanzen.

Aufgabe 2 (10 Punkte)

Fragen Sie im Hauptprogramm die Werte für R, C, U_0 und $t_{\rm Dauer}$ vom Benutzer ab. Verwenden Sie eine geeignete Funktion, um eine sichere Abfrage zu gewährleisten. Folgende Wertebereiche sind erlaubt: C: 1 pF - 10 F, R: 1 Ω - 1 G Ω , U_0 : 1 mV - 1 kV, $t_{\rm Dauer}$: 1 µs - 1000 s.

Aufgabe 3 (15 Punkte)

Erstellen Sie eine Funktion mit Namen Tableberechnen (...) zum Berechnen aller Werte in der Tabelle.

Klausur066 bitte wenden \rightarrow

Aufgabe 4 (15 Punkte)

Erstellen Sie eine Funktion mit Namen TabelleAusgeben(...), welche die Tabelle auf dem Bildschirm ausgibt. Achten Sie auf eine ordentliche Ausrichtung der Spalten.

Aufgabe 5 (20 Punkte)

Fügen Sie die Programmstücke zu einem lauffähigen Programm zusammen:

Achten Sie auf einen guten Programmierstil (Vermeidung globaler Variablen, sinnvolle Variablennamen, Quellcode einrücken und kommentieren, keine absoluten Sprünge mit **goto**, keine Warnungen vom Compiler etc.).

Aufgabe 6 (10 Punkte)

Erstellen Sie für die Funktion TableBerechnen(...) aus Aufgabe 3 ein Aktivitätsdiagramm. Besonders Schleifen sollen dargestellt werden.

3 Verständnisfragen

Aufgabe 7 (3 Punkte)

Sie wiederholen einen Vorgang mindestens einmal, bis der Benutzer die Taste ESC betätigt. Welche Schleife ist zu bevorzugen? \square for $() \dots \square$ while $() \dots \square$ do \dots

Aufgabe 8 (5 Punkte)

Warum sollten globale Variablen vermieden werden?

Aufgabe 9 (5 Punkte)

Was bedeutet ein Rechteck mit abgerundeten Ecken in einem Aktivitätsdiagramm?

Aufgabe 10 (6 Punkte)

Welchen Wert haben folgende Zahlen im Dezimalsystem?

a)
$$10011010_2 \implies$$

$$b)$$
 432₈ \Rightarrow

$$c)$$
 1AF₁₆ \Rightarrow

Aufgabe 11 (6 Punkte)

Welche Datentypen haben folgende Ausdrücke?

7-3f	
2*1.2	
2/3	

0xefa		
a>b?1.1:1e3		
3&5		