\qquad
\qquad
\qquad

Exam: Mathematics 1

Hamburg University of Applied Science
Faculty of Engineering \& Computer Science, Department of Information and Electrical Engineering Prof. Dr. Robert Heß, February $16^{\text {th }}$ 2021, duration: 90 Min.
Permitted aids: six A4-pages of personal notes (i.e. single sided sheets), lecture notes and other personal notes

Result: \qquad of 100 points

Mark: \qquad points.

Problem 1 (20 points)

Prove by mathematical induction: $\frac{9}{4}+\sum_{k=1}^{n} \frac{3^{k+1}}{2^{k+2}}=\left(\frac{3}{2}\right)^{n+2}$

Problem 2 (15 points)

Analyse convergence by root test and sketch the region of convergence for:

$$
f(z)=\sum_{k=0}^{\infty}\left(\frac{z-\mathrm{j}}{2}\right)^{k}, \quad z \in \mathbb{C}
$$

Problem 3 (12 points)

Resolve, i.e. differentiate and simplify the following expressions:
a) $\frac{\mathrm{d}}{\mathrm{d} t} e^{\mathrm{j} \omega t+\sigma t}$
b) $\frac{\mathrm{d}}{\mathrm{d} x} \frac{x-1}{x+1}$
c) $\frac{\mathrm{d}^{n}}{\mathrm{~d} b^{n}} \exp (a b+b c+c a)$

Problem 4 (24 points)

Apply partial fraction decomposition on the following rational function with separate summands for all poles except for pairs of complex conjugate poles.

$$
f(x)=\frac{11 x-23}{x^{3}-2 x^{2}-5 x+6}
$$

Problem 5 (20 points)

Analyse the following SLE:

$$
x_{1}+2 x_{2}+3 x_{3}=4 \quad 4 x_{1}+5 x_{2}+6 x_{3}=4 \quad 2 x_{1}+2 x_{2}=-6 \quad 3 x_{2}+4 x_{3}=6
$$

a) Evaluate the extended coefficient matrix $A \mid b$
b) Find the reduced row echelon form $\operatorname{rref}(A \mid b)$
c) Evaluate $\operatorname{rank}(A)$ and $\operatorname{rank}(A \mid b)$ and draw you conclusion w.r.t. the solution behaviour
d) If possible derive the solution of the SLE

Problem 6 (9 points)

Let $A \in M(5 \times 5, \mathbb{K})$ be a non-invertible matrix. What can you say about a) the determinant of $A, \mathrm{~b}$) linear dependency of row vectors in A and c) the number of basic columns in A.

