Exam: Mathematics 1

Hamburg University of Applied Science

Faculty of Engineering & Computer Science, Department of Information and Electrical Engineering Prof. Dr. Robert Heß, February 18th 2022, duration: 90 Min. Permitted aids: up to six A4-pages of personal notes (i.e. single sided sheets)

Result: of 100 points Mark: points.

I hereby apply to participate in the examination in Mathematics 1 at February 18th 2022.

I feel healthy and fit for the examination. All the preconditions for the examination are fulfilled.

I know that anyone who has symptoms of illness which have have not been clarified by medical staff is not allowed to enter the premises of the HAW Hamburg. I hereby confirm that I do not show any symptoms.

February 18th 2022

.....

signature

Problem 1 (16 points)

Prove by mathematical induction:
$$\sum_{k=1}^{n} \frac{1}{\sqrt{k}} > \sqrt{n}$$
 for all $n \ge 2, n \in \mathbb{N}$

Problem 2 (15 points)

For $z^3 = 2 - 2j$ find all solutions for $z \in \mathbb{C}$.

Problem 3 (15 points)

With $f:\mathbb{C}\to\mathbb{C}$ find and sketch the region of convergence for

$f(z) = \sum_{k=0}^{\infty} (2z - 1 - j)^k$

Problem 4 (20 points)

Apply partial fraction decomposition on the following rational function with separate summands for all poles except for pairs of complex conjugate poles.

$$f(x) = \frac{3x^2 + 5x - 2}{x^3 - 2x - 4}$$

Problem 5 (9 points)

Differentiate and simplify the following expressions:

a)
$$\frac{\mathrm{d}}{\mathrm{d}t} e^{\mathrm{j}(\omega t + \varphi_0)}$$
 b) $\frac{\mathrm{d}}{\mathrm{d}x} \ln |x^2 + y^3|$ c) $\frac{\mathrm{d}^{4n}}{\mathrm{d}x^{4n}} \cos(ax + b)$

a) Evaluate the inverse of $A = \begin{pmatrix} 1 & 1 & 1 & 1 \\ 2 & 3 & 3 & 2 \\ 3 & 2 & 1 & 1 \\ 1 & 3 & 2 & 0 \end{pmatrix}$.

b) Derive the determinant of A.