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1. Integral calculus

1.1. Introduction

Integral calculus was first motivated by the eval-
uation of an area underneath a curve of a func-
tion. For simple functions like a constant func-
tion or a function with a constant slope the eval-
uation of the surface is obvious. However, for
arbitrary functions it becomes difficult.

x

f(x)

a b

A way to estimate the area underneath the
function is to fill it with a large number of small
well defined rectangles or squares of known size.
E.g. we may start with squares of 1 m2 size. If
we can’t place any more of these 1 m2 squares
we continue with 1 dm2 squares. We continue
in the same manner until we find a sufficient
precise solution for the given purpose.

The field of integral calculus is not limited to
areas underneath functions curves.

Example 1.1. E.g. the mains voltage in house-
holds is said to be 230 V. If you connect an
oscilloscope to it (be careful!) you will find
a sine-shaped signal oscillating with frequency
f = 50 Hz and a peak-voltage of Up = 325 V.
But where do we find the stated of 230 V?

t
ms

U
V

10 20

325

230

The 230 V is the DC-voltage having the same
effect to an absorber obeying Ohm’s law. The
absorbed power in such an absorber is

P (t) = U(t) · I(t) = U(t) · U(t)

R
=
U2(t)

R

where t is the time, P the absorbed power, U
the voltage, I the current through the absorber
and R the resistance of the absorber.

To find this effective voltage Ueff we need to
find the area underneath the function

U2(t) = Up
2 sin2(2π f t) =

Up
2

2
(1− cos(4π f t))

with Up as the peak-voltage of 325 V and f as
the frequency of 50 Hz.

t

U, U2

U2(t)

U(t)

Ueff
2

Up U2
p

What is the area underneath this function?
We are lucky and see that the area above the
dashed line fit into the area underneath the
dashed line not covered by the function. Hence
we get:

Ueff
2 =

Up
2

2

Ueff =
Up√

2
=

325 V√
2
≈ 230 V

A general approach is to evaluate the integral
over a period T of the frequency f = 1

T :

U2
eff =

1

T

∫ T

0
U2(t) dt
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For a sine wave we get:

U2
eff =

1

T

∫ T

0
U2
p sin2(2πft) dt

=
U2
p

T

∫ T

0

1

2
− 1

2
cos(4πft) dt

=
U2
p

T

∫ T

0

1

2
dt−

U2
p

T

∫ T

0

1

2
cos(4πft) dt

=
U2
p

T
·
T
2 −

U2
p

T
· 0 =

U2
p

2

Ueff =
Up√

2

C

There are many other applications in science
and engineering where we need integration as a
standard tool. This and the subsequent chap-
ters give an introduction into integral calculus.

1.2. Definite integral

We approach integral calculus by replacing the
investigated function by a series of rectangles.
The word definite in this context means that we
focus on a given interval on the abscissa, i.e. a
given start point a and a given end point b.

We define three types of rectangles to replace
the area underneath a function:

Definition 1.1 (Riemann sum). Let the do-
main of the function f : [a, b] → R be subdi-
vided in n equal spaced steps ∆x = b−a

n such
that: xk = a + k∆x for k ∈ {0, 1, . . . , n}. We
define

Rf (n) =
n−1∑
k=0

∆xf(xk)

as the Riemann sum,

Uf (n) =

n−1∑
k=0

∆x sup
[xk,xk+1]

(f(x))

as the upper sum and

Lf (n) =

n−1∑
k=0

∆x inf
[xk,xk+1]

(f(x))

as the lower sum. C

Riemann sum:

x

f(x)

x0=a x1 x2 x3 x4 x5=b

∆x ∆x ∆x ∆x ∆x

∆
x
f

(x
0
)

∆
x
f

(x
1
)

∆
x
f

(x
2
)

..
.

..
.

upper sum:

x

f(x)

x0=a x1 x2 x3 x4 x5=b

lower sum:

x

f(x)

x0=a x1 x2 x3 x4 x5=b

The subdivisions do not necessary have to
have equal size. However, for the sake of easy
argument we stick to equal sized subdivisions.

For the Riemann sum we defined the top left
corner of each rectangle to meet the function
value. However, we may have taken any point
at the upper edge to meet the function value.

For rectangles below the abscissa we take neg-
ative values. I.e. we may get zero sum if the
areas above and below the abscissa “compen-
sate”.

Example 1.2. What is the Riemann-, upper-
and lower sum for the function f : R→ R, x 7→
x2 on the interval [−2, 2] for four equal sized
steps?

∆x =
b− a
n

=
2− (−2)

4
= 1

xk = a+ k∆x = −2 + 1 · k = k − 2

6 August 15, 2022



x

f(x)

−2 0 2

2

4

Riemann sum:

Rf (4) =
n−1∑
k=0

∆xf(xk) =
3∑

k=0

1 · (k − 2)2

= 4 + 1 + 0 + 1 = 6

x

f(x)

−2 0 2

2

4

upper sum:

Uf (4) =
n−1∑
k=0

∆x sup
[xk,xk+1]

f(x)

= 4 + 1 + 1 + 4 = 10

x

f(x)

−2 0 2

2

4

lower sum:

Lf (4) =
n−1∑
k=0

∆x inf
[xk,xk+1]

f(x)

= 1 + 0 + 0 + 1 = 2

C

Obviously the lower sum is less or equal to
the Riemann sum, which again is less or equal
to the upper sum:

Lf (n) ≤ Rf (n) ≤ Uf (n)

If we increase the number of steps n to divide
the interval [a, b] the upper sum decreases and
the lower sum increases. The larger n becomes
the closer the three sums converge towards the
area underneath the curve.

x

f(x)

a b

x

f(x)

a b

Definition 1.2 (Convergent Riemann sum).
Let f : [a, b]→ R with the domain equally sub-
divided into n intervals of length ∆x = b−a

n .
If for increasing n the difference of the upper
and lower sum is convergent towards zero we
say the sequence of Riemann sums (Rf (n)) is
convergent. I.e.

lim
n→∞

{Uf (n)− Lf (n)} = 0

If (Rf (n)) is convergent, we say f is an inte-
grable function. C

Remark: There are integrable functions where
the sequence of Riemann sums is not conver-
gent. However, for our purposes the Riemann
integral is a sufficient explanation. The inter-
ested student may look for Lebesgue integration
to find more details.

Definition 1.3 (Definite integral). For a con-
vergent sequence of Riemann sums (Rf (n)) we
define the definite integral (or Riemann inte-
gral) with: ∫ b

a
f(x)dx = lim

n→∞
Rf (n)

We call the function f(x) the integrand , the in-
terval [a, b] the domain of integration and the
limits a and b the limits of integration or the
lower limit and upper limit , respectively. C
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Now we want to evaluate the definite integral
of some integrands by applying the Riemann
sum:

Example 1.3. What is the definite integral of
a constant function f(x) = 1 over the interval
[a, b]?

x

f(x)

a b

1

Geometrically we see that the surface under-
neath the curve equals b−a. However, we apply
the Riemann integral:∫ b

a
f(x)dx = lim

n→∞
Rf (n) = lim

n→∞

n−1∑
k=0

∆xf(xk)

= lim
n→∞

n−1∑
k=0

b−a
n f(a+ k b−an )

= lim
n→∞

n−1∑
k=0

b−a
n = lim

n→∞
b−a
n

n−1∑
k=0

1

= lim
n→∞

b−a
n n = lim

n→∞
(b− a)

= b− a

I.e.

∫ b

a
1 dx = b− a C

Example 1.4. What is the definite integral of
f(x) = x over the interval [a, b]?

x

f(x)

a b

We again apply the Riemann integral:

Rf (n) =

n−1∑
k=0

∆xf(xk) =

n−1∑
k=0

∆xxk

=

n−1∑
k=0

∆x(a+ k∆x)

= ∆x a
n−1∑
k=0

1 + ∆x2
n−1∑
k=0

k

= ∆x an+ ∆x2n(n− 1)

2

=
b− a
n

an+

(
b− a
n

)2 n(n− 1)

2

= (b− a)a+
(b− a)2

2
· n

2 − n
n2︸ ︷︷ ︸
−→
n→∞

1

−→
n→∞

2ba− 2a2

2
+
b2 − 2ba+ a2

2

=
b2 − a2

2

I.e.

∫ b

a
x dx =

b2 − a2

2
C

Example 1.5. What is the definite integral of
f(x) = x2 over the interval [a, b]?

x

f(x)

a b

We again apply the Riemann integral:

Rf (n) =

n−1∑
k=0

∆xf(xk) =

n−1∑
k=0

∆xxk
2

=
n−1∑
k=0

∆x(a+ k∆x)2

= ∆x

n−1∑
k=0

(a2 + 2ak∆x+ k2∆x2)

= ∆xa2n+ 2a∆x2
n−1∑
k=0

k + ∆x3
n−1∑
k=0

k2

after some conversion:

= (b− a)2 + (b− a)2a− (b−a)2a
n

+ (b−a)3

3 − (b−a)3

2n + (b−a)3

6n2

−→
n→∞

(b− a)2 + (b− a)2a+ (b−a)3

3
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=
b3 − a3

3

I.e.

∫ b

a
x2 dx =

b3 − a3

3
C

Could it be, that we found some sort of pat-
tern ∫ b

a
xn dx =

bn+1 − an+1

n+ 1
?

We will see later that it is true.

Theorem 1.4 (Continuous functions are inte-
grable). For continuous functions f : [a, b] →
R the sequence of Riemann sums (Rf (n)) is
convergent, i.e. continuous functions are inte-
grable. C

Remark: However, not all integrable functions
are continuous. We look at this later.

1.3. Properties of definite
integrals

We now derive some properties of definite inte-
grals:

Theorem 1.5 (Properties of definite integrals).
Let I ⊂ R be a closed interval, a, b, c ∈ I with
a < b < c, λ ∈ R and f, g : I → R be integrable
functions. We then have

�

∫ b

a
f(x)dx+

∫ c

b
f(x)dx =

∫ c

a
f(x)dx

�

∫ b

a
(f(x) + g(x))dx

=

∫ b

a
f(x)dx+

∫ b

a
g(x)dx

�

∫ b

a
λf(x)dx = λ

∫ b

a
f(x)dx

�

∣∣∣∣∫ b

a
f(x)dx

∣∣∣∣ ≤ ∫ b

a
|f(x)|dx

�

∫ b

a
f(x)dx = −

∫ a

b
f(x)dx

C

Example 1.6. Integrate the function f over
the interval [−1, 1]: f : R→ R, x 7→ |x|∫ 1

−1
|x| dx =

∫ 0

−1
−x dx+

∫ 1

0
x dx

= −
∫ 0

−1
x dx+

∫ 1

0
x dx

= −02 − (−1)2

2
+

12 − 02

2

=
1

2
+

1

2
= 1

x0

|x|

−1 1

1

C

Example 1.7. Integrate the function f over
the interval [0, 2]: f : R→ R, x 7→ 3x2 − 2∫ 2

0
3x2 − 2 dx = 3

∫ 2

0
x2 dx− 2

∫ 2

0
dx

= 3
23 − 03

3
− 2(2− 0) = 4

x1

|x|

10

5

0

2

negative
area

C

1.4. Fundamental theorem of
calculus

We now take the upper limit as a variable x
and replace the lower limit a by x0. Hence, the
integral becomes a function of x:

F (x) =

∫ x

x0

f(x′)dx′

If we rewrite the results of the previous three
examples we get:

ex. 1.3:

∫ x

x0

1 dx′ = x− x0
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ex. 1.4:

∫ x

x0

x′ dx′ =
x2 − x0

2

2
=
x2

2
− x0

2

2

ex. 1.5:

∫ x

x0

x′2 dx′ =
x3 − x0

3

3
=
x3

3
− x0

3

3

An interesting fact is, that the first deriva-
tives of the results bring us back to the func-
tions we integrated in the first place. Please
note that this is true for any lower limit x0.

example 1.3:
d(x− x0)

dx
= 1

example 1.4:
dx

2−x02
2

dx
= x

example 1.5:
dx

3−x03
3

dx
= x2

This leads us to the first part of the funda-
mental theorem of calculus:

Theorem 1.6 (First fundamental theorem of
calculus). Let f : [a, b] → R be a continuous
function. If

F (x) =

∫ x

a
f(x′) dx′

then we have for any x ∈ (a, b)

d

dx
F (x) = f(x)

C

The fundamental theorem of calculus states,
that integration is somehow the inversion of dif-
ferentiation. The only difference is at some dis-
continuities where the integral is defined but the
derivative of the integral does not lead us back
to the original function.

Example 1.8. For the function

sign(x) :


R→ R
x 7→ 1 for x > 0
x 7→ 0 for x = 0
x 7→ −1 for x < 0

the integral F (x) with lower limit zero is

F (x) =

∫ x

0
sign(x′) dx′ = |x|

The derivative of F is not defined for at x = 0
since is it not possible to evaluate the slope at
x = 0.

dF (x)

dx
= sign(x) for x 6= 0

x

sign(x)

−1

1

x

F (x)

C

Hence, the first part of the fundamental the-
orem of calculus is limited to continuous func-
tions.

The second part of the fundamental theorem
of calculus avoids differentiation and, hence, can
be extended to any integrable function:

Theorem 1.7 (Second fundamental theorem of
calculus). Let f : [a, b] → R be an integrable
function and F : [a, b]→ R,

F (x) =

∫ x

x0

f(x′)dx′

be an integral of f . Then we have for any x0 ∈
[a, b]: ∫ b

a
f(x)dx = F (b)− F (a)

C

1.5. Indefinite integral

Yet we integrated functions over intervals with
lower and upper limits. Now we want to find
a more general way to integrate functions. To
do so we first need the so called primitive of a
function:

Definition 1.8 (Primitive function). For a
function f : [a, b]→ R any function F : [a, b]→
R with derivative equal to f is called a primitive
function of f , i.e.

d

dx
F (x) = f(x)

Other terms for F are antiderivative and in-
verse derivative. C
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When searching for a primitive F of a given
function f we remember that the derivative f
at any point x gives the slope of F at this point.
But since we do not know the value F at this
point we may draw little lines indicating the
slope at different values of F . A primitive then
is a curve having the desired slope at all values
of x. Unfortunately there are many primitives
fulfilling these requirements:

x

y

f

F1

F2

F3

We take the notation we used earlier:

F (x) =

∫ x

x0

f(x′)dx′

Since the upper limit is given in the integral
function we may write:

F (x) =

∫
x0

f(x)dx

A change of the lower limit x0 results in an
offset C to the primitive. I.e. when changing
the lower limit, the primitive remains the same
except for a vertical shift.∫

x0

f(x) dx = F (x)− F (x0) = F (x) + C

We remove the lower limit and take the constant
C as a reminder. This leads us to the indefinite
integral: ∫

f(x)dx = F (x) + C

Remark: From mathematical point of view the
constant C acts rather as a reminder than a
mathematical variable. E.g. under some cir-
cumstances we add two of these constants into
a new constant with the same name:∫

(f1 + f2)dx =

∫
f1 dx+

∫
f2 dx

= (F1 + C) + (F2 + C)

= (F1 + F2) + C

1.6. Elementary integrals

Elementary integrals can be derived by invert-
ing derivatives. Some of them are listed in the
table below. The constant C has been left out
and must be added to all integrals except the
first.

f(x) F (x) =
∫
f(x) dx

0 C

xa
xa+1

a+ 1

for a ∈ Z, a 6= −1

or a ∈ R, a 6= −1, x ≥ 0

√
x

2
√
x3

3
for x ≥ 0

1

x
ln |x|

ex ex

ax
ax

ln a
for a ∈ R, a > 0

lnx x lnx− x for x > 0

cos(x) sin(x)

sin(x) − cos(x)

cosh(x) sinh(x)

sinh(x) cosh(x)
1

x2 + 1
arctan(x)

−1

x2 + 1
arccot(x)

Remark: For a definite integral we write:∫ b

a
f(x) dx =

[
F (x)

]b
a

= F (b)− F (a)

Here the constant C cancels out.

1.7. Problems

Problem 1.1: For f : R → R, x 7→ sin(x)
evaluate the Riemann-, upper- and lower-sum
on the interval [0, π] in four equal sized steps.

Problem 1.2: Evaluate the Riemann-, upper-
and lower sum for the function f : R→ R, x 7→
2x on the interval [0, 4]. Divide the domain into
4 sub-intervals of equal size.

Problem 1.3: Repeat the previous problem
for 1, 10, 100, 1000 and infinite number of sub-
intervals.
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Problem 1.4: For x ∈ R solve the following
integrals by applying Riemann sums.

1.

∫ 3

1
2x dx 5.

∫ 2

0
(x2 + x) dx

2.

∫ 2

0
5x dx 6.

∫ b

0
(2x2 − x) dx

3.

∫ 4

−1
x dx 7.

∫ b

a
(x2 + 2) dx

4.

∫ 3

2
(x− 1) dx 8.

∫ a

b
(x2 + 2) dx

Problem 1.5: For x ∈ R solve the following
integrals. Consider the properties of definite in-
tegrals.

1.

∫ 3

−2
|x|dx 5.

∫ 2

−2
(x2 − |x|) dx

2.

∫ −2

3
|x| dx 6.

∫ −1

1
|x|dx

3.

∫ 3

−2
| − x|dx 7.

∫ 2b

a
x dx

4.

∫ 1

−1
(|x|+ x) dx 8.

∫ b

−a
x2 dx

Problem 1.6: For t ∈ R solve the following
integrals. Consider the fundamental theorem of
calculus.

1.

∫ x

x0

3 t2 dt 5.

∫ x

x0

2π cos(2π t) dt

2.

∫ x

x0

cos(t) dt 6.

∫ x

x0

2jπf e2jπf t dt

3.

∫ x

x0

sin(t) dt 7.

∫ x

x0

2t cos
(
t2
)

dt

4.

∫ x

x0

et dt 8.

∫ x

x0

3t2 sin
(
t3
)

dt

Problem 1.7: For x ∈ R find a primitive for
each of the following functions:

f1(x) = 1 f5(x) = sin(x)

f2(x) = 2x f6(x) = cos(x)

f3(x) = x2 f7(x) = ex

f4(x) = x3 f8(x) = x2 − x+ 1

Problem 1.8: For x ∈ R solve the following
integrals.

1.

∫
0 dx 5.

∫
5x dx

2.

∫
adx 6.

∫
πx dx

3.

∫
(x2 − 1) dx 7.

∫
2 cosh(x) dx

4.

∫
3ex dx 8.

∫
1
2 sinh(x) dx

Problem 1.9: For x ∈ R solve the following
integrals.

1.

∫ 3

0
|x− 1|dx 5.

∫ π

−π
sin |x|dx

2.

∫ 2

−2
|x2 − 1| dx 6.

∫
cos(2π x) dx

3.

∫
|x2|dx 7.

∫
ejx dx

4.

∫ 4

−1
e|x| dx 8.

∫
(1 + tan2(3x)) dx

Problem 1.10: For x ∈ R>0 solve the follow-
ing integrals.

1.

∫ √
x dx 5.

∫
1

3
√
x2

dx

2.

∫ √
x3 dx 6.

∫
ln(x) dx

3.

∫
1√
x

dx 7.

∫
log10(x) dx

4.

∫
3
√
x dx 8.

∫
log2(x) dx
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2. Application of integrals

In this chapter we want to apply integrals to
some geometric applications. Some of them can
be solved without integral calculus, however, we
still try to solve them with integrals.

2.1. Area of trapezium on
abscissa

A trapezium has four edges with two of them
being parallel. We want to analyse a trapezium
with one edge on the abscissa of a Cartesian co-
ordinate system and two other edges being per-
pendicular on the abscissa. Hence, two corners
have a right angle.

x

y

y1

x1

p1

y2

x2

p2

A

We express the line between the two points
p1 and p2 by a linear function:

f(x) = mx+ b

m =
y2 − y1

x2 − x1

b = y1 −mx1 =
y1x2 − y2x1

x2 − x1

Now we evaluate the area underneath the func-
tion by taking the definite integral between x1

and x2:

A =

∫ x2

x1

f(x) dx =

∫ x2

x1

(mx+ b) dx

= m

∫ x2

x1

x dx+ b

∫ x2

x1

dx

= m
x2

2 − x1
2

2
+ b(x2 − x1)

· · ·
A = 1

2(y2 + y1)(x2 − x1)

The results must be taken with care: If the
points are below the abscissa, the area is nega-
tive:

x

y

y1

x1

p1

y2

x2

p2

A is negative

Positive points integrated from right to left,
i.e. with x1 > x2 will also result in a negative
area:

x

y

y1

x1

p1

y2

x2

p2

A is negative

integration direction

Finally, if one of the points is above and the
other below the abscissa, parts of the area are
negative and other parts are positive:

x

y

y1

x1

p1

y2

x2

p2

negative area

positive area

integration direction

−

+

x

y

y1

x1

p1

y2

x2

p2

positive area

negative area

integration direction

+

−
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Although the linear function between p1 and
p2 is not defined for x1 = x2, the integral re-
mains valid and results in zero:

x1 = x2 ⇒ A = 0

2.2. Area of triangles

What is the area of a triangle with its corners
being at arbitrary points p1, p2 and p3?

x

y

x1

p1
y1

x2

p2y2

x3

p3y3

For a triangle as sketched above we take the
area A as a combination of the three partial
areas A1, A2 and A3:

x

y

p1

p2

p3

x

y

p1

p2

p3

x

y

p1

p2

p3

A1 A2 A3

f1

f2

f1

A = A1 +A2 −A3

=

∫ x3

x1

f1(x) dx+

∫ x2

x3

f2(x) dx

−
∫ x2

x1

f3(x) dx

=

∫ x3

x1

f1(x) dx+

∫ x2

x3

f2(x) dx

+

∫ x1

x2

f3(x) dx

= 1
2{(y3 + y1)(x3 − x1) + (y2 + y3)(x2 − x3)

+ (y1 + y2)(x1 − x2)}

=
y1(x3 − x2) + y2(x1 − x3) + y3(x2 − x1)

2

The area is positive if the points are arranged
counter clockwise, and negative if the points are
arranged clockwise.

We come to the same result, if we write the
three points into a 3× 3-Matrix and evaluate 1

2
of the determinant:

A =
1

2
det

 1 x1 y1

1 x2 y2

1 x3 y3


=

1

2
det

 1 1 1
x1 x2 x3

y1 y2 y3


2.3. Area of polygons

We may extend the previous result to polygons
with an arbitrary number of corners.

x

y

x1

p1
y1

x2

p2
y2

x3

p3y3

x4

p4y4

x5

p5y5

We have to add the integrals of all linear func-
tions connecting the points:

A =

∫ xn

x1

fn(x) dx+

n−1∑
k=1

∫ xk

xk+1

fk(x) dx

=
1

2

{
y1(xn − x2) +

n−1∑
k=2

yk(xk−1 − xk+1)

+ yn(xn−1 − x1)

}

Again, with points arranged counter clock-
wise we get a positive area and a negative area
for points arranged clockwise. If some of the
lines connecting the points cross each other, we
get positive and negative area fractions.

2.4. Area of discs

From textbooks we know the area A of a disc
with radius r to be:

A = πr2
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where π is the ratio of the circumference of a
disc to its diameter. But where does this equa-
tion come from? We want to use infinite sums
and integral calculus to derive this equation.

x

y

r

We split the disc into n rings:

x

y

r1

r2

The surface of a ring Ar with radii r1 and r2

is limited by:

2πr1(r2 − r1) ≤ Ar ≤ 2πr2(r2 − r1)

The left term is the area of an rectangle of
length 2πr1 and width r2 − r1. The right term
is the area of an rectangle of length 2πr2 and
width r2 − r1.

left term: 2πr1

r2 − r1

right term: 2πr2

r2 − r1

The areas of the two rectangles act as a lower
and upper limit for the true area of the ring.

Adding the area of all rings based on the inner
radius leads us to the total area AL which is not
larger than the true area of the disk Adisc.

Adding the area of all rings based on the outer
radius leads us to the total area AU which is not
less than the true area of the disk Adisc.

With ∆r = r
n and rk = k∆r we get:

AL(n) =
n−1∑
k=0

2πrk∆r = 2π
n−1∑
k=0

k∆r∆r

= 2π∆r2
n−1∑
k=0

k = 2π
r2

n2
· n(n− 1)

2

= πr2n− 1

n
−→
n→∞

πr2

AU (n) =

n∑
k=1

2πrk∆r = 2π

n∑
k=1

k∆r∆r

= 2π∆r2
n∑
k=1

k = 2π
r2

n2
· n(n+ 1)

2

= πr2n+ 1

n
−→
n→∞

πr2

Since the true surface of the disc Adisk is not
less than AL and not larger than AU we were
able to prove:

Adisk = πr2

Another approach is to plot the circumference
as a function the radius:

x

f(x)

0
0

r

2πr

Adisc

The area under the function equals the area
of the disc. Hence, we take the integral from
zero to the radius of the disc:

Adisc =

∫ r

0
2πxdx = 2π

∫ r

0
x dx = 2π

r2 − 02

2

= πr2

Again, we find the equation for the area of a
disc to be Adisc = πr2. The application of inte-
gral calculus led us more rapid to the equation
under question.
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2.5. Volume of cones

We assume a right circular cone with height h
and radius r, i.e. a cone with a disc of radius
r as base and the apex being with distance h
perpendicular above the centre of the base.

r

h

x

r′

apex

base

We may imagine the cone as a pile of thin
discs with decreasing areas towards the apex of
the cone. Plotting the area of the discs as a
function of distance to the apex results in the
parabola where the radius r′ of the discs in-
crease with distance to the apex:

f(x) = πr′2 = π
(rx
h

)2
=
πr2

h2
x2

0 x0

A

Abase

h

Vcone

We now integrate from the apex to the base:

Vcone =

∫ h

0

πr2

h2
x2 dx =

πr2

h2

∫ h

0
x2 dx

=
πr2

h2
· h

3 − 03

3
=

1

3
πr2h

This is the equation for the volume of a right
circular cone with height h and base radius r.
It is one third of the volume of a cylinder with
same height and radius.

2.6. Volume of spheres

We imagine a sphere with radius r as a pile
of discs. Position and radius of the discs are

given by x and y, respectively. Due to the
Pythagorean theorem we get

y2 = r2 − x2

x

y

We integrate over all discs from −r to r:

Vsphere =

∫ r

−r
πy2 dx =

∫ r

−r
π(r2 − x2) dx

=

∫ r

−r
πr2 dx−

∫ r

−r
πx2 dx

= πr2

∫ r

−r
dx− π

∫ r

−r
x2 dx

= πr2(r − (−r))− πr
3 − (−r)3

3
= 2πr3 − 2

3πr
3 = 4

3πr
3

2.7. Surface area of spheres

Let us first evaluate the volume of the mantle of
a sphere (like the skin of a football). The vol-
ume of the mantle is the volume of the sphere
surrounding the mantle minus the the volume
of the sphere inside the mantle. With r as the
outer radius of the mantle and ∆r as the thick-
ness of the mantle we get:

Vmantle =
4π

3
r3 − 4π

3
(r −∆r)3

r
∆r

For a thin mantle we may approximate the vol-
ume of the mantle by the outer surface area of
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the sphere multiplied by the thickness of the
mantle:

Vmantle ≈ Asphere∆r ⇒ Asphere ≈
Vmantle

∆r

When reducing ∆r towards zero we get a precise
relationship:

Asphere = lim
∆r→0

Vmantle

∆r

= lim
∆r→0

4π

3
· r

3 − (r −∆r)3

∆r

=
4π

3
lim

∆r→0

3r2∆r − 3r∆r2 + ∆r3

∆r

=
4π

3
lim

∆r→0
3r2 − 3r∆r + ∆r2 = 4πr2

Another approach is to integrate directly over
the surface. We subdivide the surface into an
infinite number of rings. Each ring has a width
dw, a circumference lC and an area dA. The
total surface area of the sphere is the integral
over the ring surfaces dA.

x

y

r

dw

dϕ

ϕ

r′

dw = rdϕ

lC = 2πr′ = 2πr sinϕ

dA = lCdw = 2πr sinϕ rdϕ = 2πr2 sinϕdϕ

Asphere =

∫ π

0
dA = 2πr2

∫ π

0
sinϕdϕ

= 2πr2 [− cosϕ]π0 = 2πr2[1 + 1] = 4πr2

2.8. Mean values

In many situations mean or average values are of
interest. Examples are the average salary, the
mean temperature, the mean voltage or mean
absorbed dose.

Depending on the type of question different
types of mean values are required. In this sec-
tion two types of mean values are investigated.

2.8.1. Arithmetic mean

What is the average income of an electrical en-
gineer in his/her first job? What is the mean
temperature in my office during the day?

For questions like this the arithmetic mean x
is the value of interest. For discrete values xk,
k = 1 . . . n the arithmetic mean is defined by:

x =
1

n

n∑
k=1

xk

To evaluate the arithmetic mean y of a func-
tion y(x) an integral must be resolved:

y =
1

x2 − x1

∫ x2

x1

y(x) dx

For functions with positive and negative val-
ues sometimes the absolute of the functions is
used to evaluate the arithmetic mean:

y =
1

x2 − x1

∫ x2

x1

|y(x)|dx

E.g. what is the arithmetic mean of a sine wave
with amplitude y = ŷ sin(x)? The sine wave is
periodic, hence, integrating over one period 2π
is sufficient. Not taking the absolute of y would
result in a zero mean value:

y =
1

2π

∫ 2π

0
ŷ sin(x) dx =

ŷ

2π
[− cos(x)]2π0

=
ŷ

2π
(−1 + 1) = 0

Here we must integrate over the absolute of the
sine wave:

y =
1

2π

∫ 2π

0
|ŷ sin(x)|dx

=
ŷ

2π

∫ π

0
sin(x) dx+

ŷ

2π

∫ 2π

π
− sin(x) dx

=
ŷ

2π
[− cos(x)]π0 +

ŷ

2π
[cos(x)]2ππ

=
ŷ

2π
(1 + 1) +

ŷ

2π
(1 + 1) =

2ŷ

π
≈ 0.634 ŷ

2.8.2. Root mean square

In engineering often not a signal itself but the
effect of a signal is of interest. In many situa-
tions the effect of a signal is proportional to its
square value. Here the root mean square value
is a useful quantity. The term describes the
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equation to evaluate the root mean square ỹ of
a function y(x):

ỹ =

√
1

x2 − x1

∫ x2

x1

y2(x) dx

As an example we want to evaluate the root
mean square value of a sine wave with ampli-
tude ŷ. Since the sine wave is periodic it is
sufficient to integrate over one period:

ỹ =

√
1

2π

∫ 2π

0
ŷ2 sin2(x) dx

=

√
ŷ2

2π

∫ 2π

0

1

2
(1− cos(2x)) dx

=

√
ŷ2

4π

(∫ 2π

0
1 dx−

∫ 2π

0
cos(2x) dx

)

=

√√√√ ŷ2

4π

(
[x]2π0 −

[
1

2
sin(2x)

]2π

0

)

=

√
ŷ2

4π
(2π − 0 + 0− 0)

=

√
ŷ2

2
=

ŷ√
2
≈ 0.707 ŷ

This is an important relationship in electrical
engineering: Connecting an AC-voltage with
amplitude û to a resistor will absorb the same
amount of power as connecting a DC-voltage
with value û/

√
2 to the same resistor.

In Germany the mains voltage in households
is ũ = 230 V. This is the root mean square
value of the supplied AC-voltage. Hence, the
amplitude of the AC voltage is: û = ũ ·

√
2 ≈

325 V, see example 1.1.

2.9. Problems

Problem 2.1: You order 500 fancy post cards
printed on 120 g/m2 carton. The shape of the
cards are given by the following drawing, where
the thin grid lines have a distance of 1 cm. What
is the mass m of all postcards in kg?

25 cm

15 cm

Problem 2.2: Find the area of a regular oc-
tagon with an outer diameter of 8 cm. (Hint:
Make use of the symmetry of the octagon.)

8 cm

Problem 2.3: Find an equation for the area
of a regular polygon with n corners placed on a
circle with diameter d. (Hint: Make use of the
symmetry of regular polygons.)

n = 3 n = 4 n = 5 n = 6 n = 7

d

Problem 2.4: We derived the volume of a
right circular cone with height h and base ra-
dius r as V = 1

3πr
2h by a definite integral. Ver-

ify this equation by applying upper- and lower
sums for a pile of discs and decreasing its thick-
ness towards zero (i.e. increasing the number of
disks toward infinity).

Problem 2.5: Evaluate the volume of a right
circular frustum with height h, base radius r1

and radius of upper plane r2 by integral calcu-
lus.

r1

r2

h

Problem 2.6: For a sphere with radius r we
know the surface area to be A = 4πr2. The
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volume of a sphere may be evaluated by a sum
of empty spheres with increasing radius rk and
wall thickness ∆r.

1. Find the equation for the lower sum VL(n)
by using the surface area 4πr2

k and wall
thickness ∆r.

2. Find the equation for the upper sum VU (n).

3. Evaluate the limit towards zero wall thick-
ness ∆r → 0 to verify the volume of a
sphere to be V = 4

3πr
3.

4. Derive the volume of the sphere by inte-
grating the surface area over the radius.

Problem 2.7: For a square signal u(t) with
amplitude ±û evaluate the arithmetic mean and
the root mean square value.

t

u(t)

û

0

Problem 2.8: For a triangle signal u(t) with
amplitude ±û evaluate the arithmetic mean and
the root mean square value.

0
t

u(t)

û

August 15, 2022 19



3. Integration techniques

3.1. Improper integrals

When integrating functions we sometimes have
to deal with an infinite domain or image. In
both cases the integral may or may not con-
verge. We investigate the limit towards these
points to study the behaviour of the integrals.

3.1.1. Infinite domain

To demonstrate the behaviour of integrals with
infinite domain we show two examples, one be-
ing convergent, the other divergent:

Example 3.1.

∫ ∞
0

e−x dx =?

We take the limit of the definite integral with
the upper limit towards infinity:∫ ∞

0
e−x dx = lim

b→∞

∫ b

0
e−x dx

= lim
b→∞

[
−e−x

]b
0

= lim
b→∞

(
−e−b − (−e−0)

)
= lim

b→∞

(
1− e−b

)
= 1− 0 = 1

0 x0

y

1

b

C

Although the interval on the domain is infi-
nite the integral in this example is finite. Is this
because the function approaches zero, i.e. has
a limit of zero towards infinity? Let’s look at
another example:

Example 3.2.

∫ ∞
1

1

x
dx =?

We take the limit of the definite integral with

the upper limit towards infinity:∫ ∞
1

1

x
dx = lim

b→∞

∫ b

1

1

x
dx

= lim
b→∞

[ln |x|]b1

= lim
b→∞

(ln |b| − ln |1|)

=∞− 0 =∞

x0

y

0

1

2

1 b

C

In this example we again have a function that
approaches zero towards infinity, however, here
the integral is infinite. It depends on how the
function tends towards zero. The exponential
function e−x converges faster towards zero than
the reciprocal function x−1.

3.1.2. Integrand with infinite image

Care must be taken at points of discontinuity.
For finite values the integral is convergent. For
infinite values the integral may or may not con-
verge.

The next two examples show integrals with
infinite values, one of them being convergent the
other being divergent. We use limits towards
the point of discontinuity.

Example 3.3.

∫ 2

0

1√
x

dx =?

We take the limit of the definite integral with
the lower limit towards zero:∫ 2

0

1√
x

dx = lim
a→0+

∫ 2

a

1√
x

dx

= lim
a→0+

[
2
√
x
]2
a
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= lim
a→0+

(
2
√

2− 2
√
a
)

= 2
√

2− 0 = 2
√

2 ≈ 2.828

x

y

0

1

2

2a

C

Example 3.4.

∫ 2

0

1

x
dx =?

We take the limit of the definite integral with
the lower limit towards zero:∫ 2

0

1

x
dx = lim

a→0+

∫ 2

a

1

x
dx

= lim
a→0+

[ln |x|]2a

= lim
a→0+

(ln |2| − ln |a|)

= ln |2| − (−∞) =∞

x

y

0

1

2

2a

C

3.1.3. Summary

To study integrals with infinite domain or infi-
nite values we use limits towards these points.
For integrands with points of discontinuity we
have to separate the integral into a sum of in-
tegrals each of them being continuous.

Care must be taken for definite integrals with
known primitives containing poles within their
domain. We can not simply take the difference
of the primitive at the two limits, see the fol-
lowing example:

Example 3.5.

∫ 1

−1

dx

x
=?

We are tempted to use the integral ln |x|+C
and to evaluate the difference of the integral at
the upper and lower limit ln |1| − ln | − 1| =
0. But this is wrong! We have to analyse the
integral stepwise at its discontinuous points:∫ 1

−1

dx

x
=

∫ 0

−1

dx

x
+

∫ 1

0

dx

x

= lim
b→0−

∫ b

−1

dx

x
+ lim
a→0+

∫ 1

a

dx

x

= −∞+∞⇒ undefined!

Hence, care must be taken when integrating
over discontinuous points.

x

y

−2

−1

1

2

−1

1

b

a

C

3.2. Integration by substitution

From differential calculus we know a number of
basic functions with its derivatives. We further
know some techniques to differentiate any com-
bination of these functions.

For integral calculus we also know the a num-
ber of basic functions and its integrals. How-
ever, not all combinations of these functions are
integrable analytically.

In this section we show a technique to inte-
grate more complex integrands called integra-
tion by substitution. This integration technique
is derived from the chain-rule of differential cal-
culus. We start with the basic theorem:

Theorem 3.1 (Integration by substitution).
Let I be an interval, f : I → R a continuous
function and ϕ : [a, b] → I a continuously dif-
ferentiable function (i.e. its derivative is contin-
uous). We then have∫ b

a
f [ϕ(x)]ϕ′(x) dx =

∫ ϕ(b)

ϕ(a)
f(ϕ) dϕ

C
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Proof. Let F be a primitive of f . We differen-
tiate F [ϕ(x)] with respect to x by applying the
chain rule:

d

dx
F [ϕ(x)] = F ′[ϕ(x)]ϕ′(x) = f [ϕ(x)]ϕ′(x)

We now evaluate the definite integral:∫ b

a
f [ϕ(x)]ϕ′(x) dx = F [ϕ(b)]− F [ϕ(a)]

=

∫ ϕ(b)

ϕ(a)
f(ϕ) dϕ

We show the application of this theorem by
examples:

Example 3.6.

∫ b

a
2 sin(2x) dx =?

We see that the 2 in front of the sine-function
is the first derivative of the argument of the
sine-function. Hence, we take 2x as the inner
function ϕ(x):

ϕ(x) = 2x ϕ′(x) = 2

f(ϕ) = sin(ϕ)∫ b

a
2 sin(2x) dx =

∫ b

a
f(ϕ(x))ϕ′(x) dx

=

∫ ϕ(b)

ϕ(a)
f(ϕ) dϕ

=

∫ ϕ(b)

ϕ(a)
sin(ϕ) dϕ

=
[
− cos(ϕ)

]ϕ(b)

ϕ(a)

=
(
− cos(2b)− (− cos(2a))

)
= cos(2a)− cos(2b)

C

Remark: Integration by substitution applies
also to indefinite integrals, see the following ex-
ample.

Example 3.7.

∫
6x
√

3x2 + 1 dx =?

The first derivative of the argument of the
root equals the factor before the root, hence:

ϕ(x) = 3x2 + 1 ϕ′(x) = 6x

f(ϕ) =
√
ϕ∫

6x
√

3x2 + 1 dx =

∫
ϕ′(x)f [ϕ(x)] dx

=

∫
f(ϕ) dϕ =

∫
√
ϕdϕ

=
2

3

√
ϕ3 + C

=
2

3

√
(3x2 + 1)3 + C

C

We now leave this general approach and look
at two special substitutions before we come back
to the general case.

3.2.1. Integration of f(ax + b)

If we substitute ϕ(x) = ax + b we get the first
derivative ϕ′(x) = a which makes substitution
very simple:

Corollary 3.2 (Integration of f(ax + b)). Let
f : R → R be integrable, a, b, x1, x2 ∈ R and
ϕ = ax+ b. We then have:∫ x2

x1

f(ax+ b) dx =
1

a

∫ ax2+b

ax1+b
f(ϕ) dϕ

C

Proof. With ϕ : R→ R, x 7→ ax+ b we have:

ϕ′(x) =
dϕ

dx
= a ⇒ dx =

dϕ

a

Inserting into the integral we get:∫ x2

x1

f(ax+ b) dx =
1

a

∫ x2

x1

ϕ′(x)f [ϕ(x)] dx

=
1

a

∫ ax2+b

ax1+b
f(ϕ) dϕ

We apply this corollary in two examples:

Example 3.8.

∫ 2

1

√
2x− 1 dx =?

a = 2 b = −1

∫ 2

1

√
2x− 1 dx =

∫ x2

x1

√
ax+ bdx

=
1

a

∫ 2x2−1

2x1−1

√
ϕdϕ

=
1

2
· 2

3

[√
ϕ3
]3

1

=
1

3
(
√

27−
√

1)

=
√

3− 1

3
≈ 1.399

C
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Example 3.9.

∫ π
2

0
cos
(x

3

)
dx =?

a =
1

3
b = 0

∫ π
2

0
cos
(x

3

)
dx =

∫ x2

x1

cos(ax) dx

=
1

a

∫ ax2

ax1

cos(ϕ) dϕ

= 3 [sin(ϕ)]
π
6
0

= 3 sin
(π

6

)
= 1.5

C

The substitution holds also for indefinite in-
tegrals:

Example 3.10.

∫
(3x− 2)6 dx =?

We may solve this integral by expanding the
integrand. However, since this is a tiring pro-
cess we prefer integration by substitution:∫

(3x− 2)6 dx =
1

3

∫
ϕ6 dϕ

=
1

3
· ϕ

7

7
+ C

=
(3x− 2)7

21
+ C

C

3.2.2. Integration of ϕ′(x)
ϕ(x)

For this type of expression the outer function
is f(ϕ) = 1

ϕ with the integral ln |ϕ| + C which
leads us to the following corollary:

Corollary 3.3 (Integration of ϕ′(x)
ϕ(x) ). With ϕ :

[a, b] → R being a continuously differentiable
function (i.e. its derivative is continuous) and
ϕ(x) 6= 0 we have:∫

ϕ′(x)

ϕ(x)
dx = ln |ϕ(x)|+ C

C

Proof. With f(x) =
1

ϕ(x)
we have

∫
ϕ′(x)

ϕ(x)
dx =

∫
ϕ′(x)f(x) dx

=

∫
f(ϕ) dϕ =

∫
1

ϕ
dϕ

= ln |ϕ|+ C

= ln |ϕ(x)|+ C

We show the application of this corollary with
some examples:

Example 3.11.

∫
2x

x2 − 1
dx =?

With ϕ(x) = x2 − 1 and ϕ′(x) = 2x we get:∫
2x

x2 − 1
dx =

∫
ϕ′(x)

ϕ(x)
dx

= ln |ϕ(x)|+ C

= ln |x2 − 1|+ C

C

Example 3.12.

∫
tan(x)

3
dx =?

With ϕ(x) = cos(x) and ϕ′(x) = − sin(x) we
get: ∫

tan(x)

3
dx = −1

3

∫
− sin(x)

cos(x)
dx

= −1

3

∫
ϕ′(x)

ϕ(x)
dx

= C − 1

3
ln | cos(x)|

C

The corollary may also be applied to definite
integrals:

Example 3.13.

∫ 3
2

1

x− 1

2x− x2
dx =?

With ϕ(x) = 2x − x2 and ϕ′(x) = 2 − 2x we
get: ∫ 3

2

1

x− 1

2x− x2
dx = −1

2

∫ 3
2

1

2− 2x

2x− x2
dx

= −1

2

∫ 3
2

1

ϕ′(x)

ϕ(x)
dx

= −1
2

[
ln
∣∣2x− x2

∣∣] 32
1

Since the denominator of the integrand has no
zero within the domain we get:∫ 3

2

1

x− 1

2x− x2
dx = −1

2(ln |34 | − ln |1|)

= 1
2 ln

(
4
3

)
≈ 0.1438

C
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3.2.3. Integration of f [ϕ(x)]ϕ′(x)

We now go back to the theorem at the beginning
of this section:∫ b

a
f [ϕ(x)]ϕ′(x) dx =

∫ ϕ(b)

ϕ(a)
f(ϕ) dϕ

Once we decided on the term to substitute a
safe technique to perform substitution is:

1. Differentiate ϕ: ϕ′ =
dϕ

dx

2. Rewrite this for dx: dx =
dϕ

ϕ′

3. Insert ϕ and dx into the integral.

4. For a definite integral replace the limits a
and b by ϕ(a) and ϕ(b), respectively.

Now the first derivative should cancel out and
the required factors will remain.

Example 3.14.

∫
2− x2

x3 − 6x
dx =?

We set ϕ = x3 − 6x and get:

dϕ

dx
= 3x2 − 6 dx =

dϕ

3x2 − 6

∫
2− x2

x3 − 6x
dx =

∫
2− x2

ϕ

dϕ

3x2 − 6

= −1

3

∫
3x2 − 6

ϕ

dϕ

3x2 − 6

= −1

3

∫
dϕ

ϕ
= C − ln |ϕ|

3

= C − 1

3
ln |x3 − 6x|

C

If we plan for a definite integral to perform
a back-substitution at the end, we may leave
the limits as they are, and put brackets around
them to indicate that we did not change them:

Example 3.15.

∫ π
4

0

√
tan(x)

2 cos2(x)
dx =?

ϕ = tan(x),
dϕ

dx
=

1

cos2(x)
, dx = cos2(x)dϕ

∫ π
4

0

√
tan(x)

2 cos2(x)
dx =

∫ (π4 )

(0)

√
ϕ

2 cos2(x)
cos2(x) dϕ

=
1

2

∫ (π4 )

(0)

√
ϕdϕ

=
1

2

[
2

3

√
ϕ3

](π4 )

(0)

=
1

3

[√
tan3(x)

]π
4

0

=
1

3

(√
tan3(π4 )−

√
tan3(0)

)
=

1

3

C

3.2.4. Summary

We looked at three types of integrals where sub-
stitution helps to solve the integral. Depending
on the type of integral, we take the choice which
part of the integrand to substitute:

type of integral substitution∫
f(ax+ b) dx ϕ(x) = ax+ b∫
f ′(x)

f(x)
dx ϕ(x) = f(x)∫

f [g(x)]g′(x) dx ϕ(x) = g(x)

For definite integrals the limits must be ad-
justed by the substitution term or kept in brack-
ets until back-substitution.

There are other ways to simplify integrals by
substitution. However, we limit ourselves to
this three most common substitutions.

3.3. Integration by parts

With most integration techniques we try to con-
vert complicated integrands into one or more
easy to integrate parts. We again make use of a
rule from differential calculus: the product rule.

Theorem 3.4 (Integration by parts). Let f, g :
[a, b] → R be differentiable and its derivative
continuous. We then have:∫

f ′(x)g(x) dx = f(x)g(x)−
∫
f(x)g′(x) dx

C

Proof. Integration by parts is the inverse of the
product rule in differential calculus:

(fg)′ = f ′g + fg′
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f ′g = (fg)′ − fg′∫
f ′g dx =

∫
{(fg)′ − fg′} dx

=

∫
(fg)′dx−

∫
fg′ dx

= fg −
∫
fg′ dx

Example 3.16.

∫
cos(x) sin(x) dx =?

With f ′ = cos(x) and g = sin(x) we get:∫
cos(x) sin(x) dx =

∫
f ′g dx

= fg −
∫
fg′ dx

= sin2(x)−
∫

sin(x) cos(x)dx

By adding
∫

sin(x) cos(x)dx to the left side we
get:

2

∫
sin(x) cos(x)dx = sin2(x)∫
sin(x) cos(x)dx =

sin2(x)

2
+ C

C

Example 3.17.

∫
ex(x2 + 2x) dx =?

With f ′ = ex and g = (x2 + 2x) we get:∫
ex(x2 + 2x) dx = ex(x2 + 2x)

−
∫
ex(2x+ 2) dx

For the latter integral we again set f ′ = ex and
g = 2x+ 2 and get:∫

ex(2x+ 2) dx = ex(2x+ 2)−
∫
ex2 dx

The latter integral can be integrated directly:∫
ex2 dx = 2

∫
ex dx = 2ex + C

Now we combine the integrals:∫
ex(x2 + 2x) dx = ex(x2 + 2x)

− ex(2x+ 2) + 2ex

= exx2 + C

C

Example 3.18.

∫
ln(x) dx =?

With f ′ = 1 and g = ln(x) we get:∫
ln(x) dx =

∫
1 · ln(x) dx

= x ln(x)−
∫
x

1

x
dx

= x ln(x)− x+ C

C

Integration by parts should be applied if the
remaining integral is less complex than the orig-
inal integral. E.g. products of polynomials with
a sine-, cosine- or exponential functions are can-
didates for integration by parts.

3.4. Integration of absolutes

For integrals where the integrand contains abso-
lutes the integral must be separated into parts
where the argument of the absolute does not
change sign. See the following examples:

Example 3.19.

∫ 2

0
|x− 1| dx =?

The argument of the absolute changes sign
at x = 1, hence, we separate the integral in two
parts:∫ 2

0
|x− 1| dx =

∫ 1

0
|x− 1| dx+

∫ 2

1
|x− 1|dx

For the left integral the argument of the abso-
lute is always negative, hence, we remove the
absolute by changing the sign. For the right
integral the argument of the absolute is always
positive, hence, we remove the absolute without
any further change:∫ 2

0
|x− 1| dx =

∫ 1

0
(1− x) dx+

∫ 2

1
(x− 1) dx

=
[
x− x2

2

]1

0
+
[
x2

2 − x
]2

1

= (1− 1
2) + (4

2 − 2− 1
2 + 1) = 1

x

y

0 1 2
0

1
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C

Example 3.20.

∫ 2

0
|x2 − 2| dx =?

The argument of the absolute is negative on
the interval [0,

√
2) and positive on the interval

(
√

2, 2]. Hence we separate the integral in two
parts:∫ 2

0
|x2 − 2| dx =

∫ √2

0
2− x2 dx+

∫ 2

√
2
x2 − 2 dx

=
[
2x− x3

3

]√2

0
+
[
x3

3 − 2x
]2

√
2

=
(

2
√

2− 23/2

3

)
+
(

8
3 − 4− 23/2

3 + 2
√

2
)

= 4
3(2
√

2− 1) ≈ 2.4379

x

y

0 1
√

2 2
0

1

2

C

3.5. Integration of rational
functions

When analysing the frequency behaviour of sys-
tems one often gets to the point of integrating
large rational functions of this type:

f(x) =
anx

n + an−1x
n−1 + . . .+ a1x+ a0

bmxm + bm−1xm−1 + . . .+ b1x+ b0

In order to be able to integrate high order
rational functions we reduce them into a sum
of smaller rational functions by partial fraction
decomposition. If we then know the integrals of
the partial fractions we are able to integrate the
whole rational function.

To do so we assume m > n, an 6= 0 and
bm 6= 0, i.e. the order of the denominator poly-
nomial is greater than the order of the numera-
tor polynomial. If not we first have to perform a
polynomial division which we have seen earlier.

We remember four types of partial fractions
depending on the poles of the rational function:

� single real poles

� multiple real poles

� single complex conjugate poles

� multiple complex conjugate poles

We limit ourselves to the first three types of
poles.

3.5.1. Single real poles

Theorem 3.5 (Single real pole). For a par-
tial fraction of a single real pole of type A

x−x0 ,
A, x0 ∈ R we have:∫

A

x− x0
dx = A ln |x− x0|+ C

C

If a rational function has only single real poles
we separate it into partial fractions of given type
and integrate the summands separately.

Example 3.21.

∫
3x+ 9

x2 − 4
dx =?

We find two poles at x1 = 2 and x2 = −2:

x2 − 4 = (x− x1)(x− x2) = (x− 2)(x+ 2)

Hence, our ansatz for partial fraction decompo-
sition is:

3x+ 9

x2 − 4
=

A

x− 2
+

B

x+ 2

Multiplying by the denominator of the left term
(x− 2)(x+ 2) we get:

3x+ 9 = A(x+ 2) +B(x− 2)

We find A and B by setting x to 2 and −2,
respectively:

3 · 2 + 9 = A(2 + 2) +B(2− 2)

⇒ A =
15

4
3 · (−2) + 9 = A(−2 + 2) +B(−2− 2)

⇒ B = −3

4

This leads us to a simplified integral we are able
to integrate:∫

3x+ 9

x2 − 4
dx =

∫ (
15/4

x− 2
− 3/4

x+ 2

)
dx

=

∫
15/4

x− 2
dx−

∫
3/4

x+ 2
dx

=
15

4
ln |x− 2| − 3

4
ln |x+ 2|+ C

C

Remark: For a definite integral care must be
taken at poles. If a pole is included in the inte-
gration range the integral becomes improper.
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3.5.2. Multiple real poles

Theorem 3.6 (Multiple real pole). For a par-
tial fraction of a multiple real pole of type

A
(x−x0)n , A, x0 ∈ R, n ∈ N>1 we have:∫

A

(x− x0)n
dx = C − A

(n− 1)(x− x0)n−1

=
A(x− x0)1−n

1− n
+ C

C

If a rational function has only single and mul-
tiple real poles we separate it into partial frac-
tions of given type and integrate the summands
separately.

Example 3.22.

∫
x2 + 2x+ 1

x3 − 3x+ 2
dx =?

We find a single real pole at x1 = −2 and a
double pole at x2 = 1:

x3 − 3x+ 2 = (x− x1)(x− x2)2

= (x+ 2)(x− 1)2

Hence, our ansatz for partial fraction decompo-
sition is:

x2 + 2x+ 1

x3 − 3x+ 2
=

A

x+ 2
+

B

x− 1
+

C

(x− 1)2

Multiplying by the denominator of the left term
(x+ 2)(x− 1)2 we get:

x2+2x+1 = A(x−1)2+B(x+2)(x−1)+C(x+2)

We find A and C by setting x to −2 and 1,
respectively:

(−2)2 + 2(−2) + 1 = A(−2− 1)2

⇒ A =
1

9
12 + 2 · 1 + 1 = C(1 + 2)

⇒ C =
4

3

With known A and C we find B by setting x to
another value, e.g. x = 0:

1 =
1

9
· (−1)2 +B · 2 · (−1) +

4

3
· 2

⇒ B =
8

9

This leads us to a sum of simple fractions we
able to integrate:∫

x2 + 2x+ 1

x3 − 3x+ 2
dx

=

∫ (
1/9

x+ 2
+

8/9

x− 1
+

4/3

(x− 1)2

)
dx

=
1

9

∫
dx

x+ 2
+

8

9

∫
dx

x− 1
+

4

3

∫
dx

(x− 1)2

=
1

9
ln |x+ 2|+ 8

9
ln |x− 1| − 4

3(x− 1)
+ C

C

3.5.3. Single complex conjugate poles

We combine a pair of complex conjugate poles
into a single partial fraction:

Ax+B

(x− z)(x− z)
=

Ax+B

x2 + ax+ b

Theorem 3.7 (Single complex conjugate pole).
For a partial fraction of a single pair of complex
conjugate poles of type Ax+B

x2+ax+b
, A,B, a, b ∈ R

we have:∫
Ax+B

x2 + ax+ b
dx =

A

2
ln |x2 + ax+ b|

+
2B − aA√

4b− a2
arctan

(
2x+ a√
4b− a2

)
+ C

C

If the denominator of a rational function con-
tains a pair of complex conjugate zeros, par-
tial fraction decomposition will contain a par-
tial fraction of given type. We are then able to
integrate this partial fraction.

Example 3.23.

∫
x2 − 4

x3 − x2 + 2
dx =?

We find a single real pole at x1 = −1 and com-
plex conjugate poles at z = 1 + j and z = 1− j:

x3 − x2 + 2 = (x− x1)(x− z)(x− z)
= (x+ 1)(x− 1− j)(x− 1 + j)

= (x+ 1)(x2 − 2x+ 2)

Hence, our ansatz for partial fraction decompo-
sition is:

x2 − 4

x3 − x2 + 2
=

A

x+ 1
+

Bx+ C

x2 − 2x+ 2

Multiplying by the denominator of the left term
(x+ 1)(x2 − 2x+ 2) we get:

x2 − 4 = A(x2 − 2x+ 2) + (Bx+ C)(x+ 1)

We find A by setting x to −1:

(−1)2 − 4 = A((−1)2 − 2(−1) + 2)
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⇒ A = −3

5

For x = 0 we find C:

−4 = 2A+ C = C − 6

5

⇒ C = −14

5

Finally, setting x to one we find B:

1− 4 = −3

5
+ 2B − 28

5

⇒ B =
8

5

This leads us to an expression we are able to
integrate:∫

x2 − 4

x3 − x2 + 2
dx

=

∫ ( −3
5

x+ 1
+

8
5x−

14
5

x2 − 2x+ 2

)
dx

= −3

5

∫
1

x+ 1
dx+

1

5

∫
8x− 14

x2 − 2x+ 2
dx

= −3

5
ln |x+ 1|+ 4

5
ln |x2 − 2x+ 2|

− 6

5
arctan(x− 1) + C

C

3.5.4. Summary

The integration of a large rational function is
performed by the following steps:

1. If required perform polynomial division so
that the order of the numerator polynomial
is less than the order of the denominator
polynomial.

2. For the remaining rational function per-
form partial fraction decomposition.

3. Integrate all partial fractions separately by
applying the integrals given above.

3.6. Problems

Problem 3.1: Solve the following improper
integrals:

1.

∫ ∞
1

dx

x2
5.

∫ ∞
1

dx

xk
for k > 1

2.

∫ ∞
1

dx√
x3

6.

∫ 2

0
xk dx for k > −1

3.

∫ 2

0

dx
3
√
x

7.

∫ 1

−1

√
|x| dx

4.

∫ 1

0
x−1/2 dx 8.

∫ e

−e
ln(|x|) dx

Problem 3.2: Integrate by substitution:

1.

∫
cos(x2)2x dx 4.

∫
cos(sinx) cosx dx

2.

∫
esinϕ cosϕdϕ 5.

∫
x

x2 + 1
dx

3.

∫
3x2 sinh(x3) dx 6.

∫
exp(ax+ b) dx

Problem 3.3: Integrate by substitution of
type f(ax+ b):

1.

∫
3 cos(3x+ 1) dx 4.

∫ 2

1

√
2x− 2 dx

2.

∫
sin(1− x) dx 5.

∫ π/6

−π/6
e−jx dx

3.

∫ 1

−1

3
√
x+ 2 dx 6.

∫
2πjfe2πjft dt

Problem 3.4: Integrate by substitution of

type ϕ′(x)
ϕ(x) :

1.

∫
x

x2 + 1
dx 4.

∫
3
√
x+ 4x√
x3 + x2

dx

2.

∫
sinh(x)

cosh(x)
dx 5.

∫
x− 2x3

x4 − x2
dx

3.

∫ π/2

π/6
cot(x) dx 6.

∫ π/6

0

cos(x) dx

2 sin(x) + 1

Problem 3.5: Integrate by substitution:

1.

∫ 1

0
6x cos(3x2) dx 4.

∫
x2 sin(x3) dx

2.

∫ 1

0

√
x e
√
x3 dx 5.

∫ 1

−1
x ex

2
dx

3.

∫
cos(x)esin(x) dx 6.

∫
sin(2x)

sin2(x)
dx
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Problem 3.6: Integrate by parts:

1.

∫
xex dx 4.

∫
x sinh(x) dx

2.

∫
x3e−x dx 5.

∫
πx eπx dx

3.

∫
x2 cos(x) dx 6.

∫
sin2(x) dx

Problem 3.7: Integrate the following func-
tions:

1.

∫ 1

0

∣∣x− 1
2

∣∣ dx 4.

∫ 3

0

∣∣x2 − 2x
∣∣ dx

2.

∫ 2

−2

∣∣x2 − 1
∣∣ dx 5.

∫ 2π

0

∣∣Im(ejx)
∣∣ dx

3.

∫ 2

−2

∣∣1− x2
∣∣ dx 6.

∫ π

0

∣∣sin2(x)− 1
2

∣∣ dx

Problem 3.8: Integrate by partial fraction
decomposition:

1. f(x) =
1

x2 − 1

2. f(x) =
2x+ 3

x2 + 4x+ 4

3. f(x) =
x2 + 1

x3 + 2x2 + 2x

4. f(x) =
x3 + x

x4 + 2x3 + x2 − 2x− 2
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4. Functions with multiple arguments and values

4.1. Introduction

Yet we dealt with functions having one argu-
ment and one value, i.e.

f : R→ R

In this chapter we want to extend our view to
functions with n arguments and m values, i.e.

f : Rn → Rm

Example 4.1. The absorbed power in a resis-
tor obeying Ohm’s law is given by

P =
U2

R

The absorbed power depends on both: the ap-
plied voltage and the resistance of the resistor.
Hence, the function for the absorbed power is a
function with two arguments and one value:

P = f(U,R) :

{
R2 → R
U,R 7→ U2

R

C

Some further examples are given in table 4.1.

4.2. Definition of multiple
argument functions

Definition 4.1 (function with n arguments).
We call u a function with n arguments x1, x2,
. . . , xn if u takes a unique value for each valid
combination of x1, x2, . . . , xn and write:

u = f(x1, x2, . . . , xn)

C

Example 4.2. The kinetic energy Ekin of a
solid, not rotating body with mass m and ve-
locity v is given by:

Ekin = f(m, v) =
m

2
v2

A change of mass or velocity both influence the
kinetic energy. For a given combination of m
and v we find a unique kinetic energy Ekin.

E.g. a car with mass m = 1 t = 1000 kg and
velocity v = 36 km/h = 10 m/s has a kinetic
energy of

Ekin = f(m, v) =
m

2
v2

=
1000 kg

2
(10 m

s )2 = 50 kJ

C

4.3. Visualization of functions
with multiple arguments

There are different ways to visualize a function
with more than one argument.

For a continuous function y = f(x) with one
in- and output we were able to illustrate it by
a line in a Cartesian diagram. I.e. each tuple
(x, y) have a unique position in the diagram.

In this section we look at some techniques to
visualize functions with more than one input.

4.3.1. Parametric plot

A first technique to visualize a function with
more than one input is to keep all inputs except
one constant and to plot it as a single argument
function. To show the dependence on the other
arguments the plot is done several times for dif-
ferent values for the constant arguments.

Example 4.3.

f :

{
R2 → R
(x, y) 7→ 2 + cos

√
x2 + y2

x0 π 2π

f

0

1

2

3 y = 0
y = π

y = 3π/2

y = 2π

C
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R→ R

- voltage over time
- altitude over distance
- resistance over temperature

R→ R2

- curve on a plane
- position on surface over time

R→ R3

- curve in space
- 3d positioning over time

R2 → R

- altitude map
- grey scale picture

R2 → R2

- surface vector field
- surface transformation
- wind on earth’s surface

R2 → R3

- surface in space
- surface of geometrical bodies

R3 → R

- temperature in a solid
- mass density over volume

R3 → R2

- 3d to 2d projection
- pressure and temperature
over space

R3 → R3

- volume vector field
- air flow in volume

Table 4.1.: Examples for functions with multiple arguments and values

4.3.2. Surface plot

We may look at a function with two arguments
and one output z = f(x, y) as an infinite set of
3-tuples:

{x, y, f(x, y)}

Each tuple represents a point in space. Since
a three dimensional model is laborious to cre-
ate we look for two dimensional plots of such
functions.

For continuous functions the set of all tuples
result in a surface in space. When drawing lines
with equal distance on the x-y plane and plot-
ting the function with f(x, y) above this plane,
the function becomes visible.

Example 4.4. The following plot visualizes the
function

f :

{
R2 → R
(x, y) 7→ 2 + cos

√
x2 + y2

over the range x, y ∈ [0, 2π] as a surface plot .

x

0

π

2π

y

π 2π

f(x, y)

1

2

3

C

4.3.3. Contour plot

Another technique to visualize functions with
two arguments and one output is to use level
curves like contour lines on maps, see the fol-
lowing example.

Example 4.5. We visualize the function

f :

{
R2 → R
(x, y) 7→ x2 − y2

by a contour plot over the range x, y ∈ [−1, 1].
To do so we resolve the function f(x, y) to
y(x, f):

f(x, y) = x2 − y2 ⇒ y(x, f) = ±
√
x2 − f

We want to plot level curves at multiples of 0.2.
E.g. for the level curve at 0 we insert f = 0
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into the equation and get y = ±x which are the
diagonals in the following plot:

x

y

−1

−1

1

1 0.
0

0.0

−
0
.2

−
0
.2

0.2

0.2

−
0
.4

−
0
.4

0.4

0.4

−
0
.6

−
0
.6

0.6

0.6

−
0
.8

−
0
.8

0.8

0.8

To improve the impression in such a plot we
may colour the areas and add a legend to it:

x

y

−1
−1

0

0

1

1

-1.0 to -0.8
-0.8 to -0.6
-0.6 to -0.4
-0.4 to -0.2
-0.2 to 0.0
0.0 to 0.2
0.2 to 0.4
0.4 to 0.6
0.6 to 0.8
0.8 to 1.0

C

Example 4.6. An application is to measure the
thermal emission of a house or a device. Dif-
ferent temperatures are illustrated by different
intensities or colours.

The image below shows the thermal emission
of a coffee machine.

Wikimedia Commons, Torsten Henning, public domain

C

4.3.4. Vector plot

To visualize a function with two input- and two
output-values we may distribute arrows on a
Cartesian diagram. The position of the arrows
show the input values and the horizontal and
vertical size represent the output values.

Example 4.7. We visualize the function:

f :

{
R2 → R2

(x, y) 7→ (y, x)

by a vector plot

x

y

−2

−2

−1

−1

1

1

2

2

C

Example 4.8. A vector plot is useful to illus-
trate electric fields in space. The image below
shows the electric field of a dipole.
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C

4.4. Continuity

For a function f with one argument we defined
a continuous point x0 by

lim
x→x0+

f(x) = lim
x→x0−

f(x) = f(x0)

In short we write

lim
x→x0

f(x) = f(x0)

implying that x → x0 includes both x → x0
+

and x → x0
−. I.e. the function value f(x0)

must equal the limit from left (x < x0) and
right (x > x0).

For functions with more than one argument
we define continuity by the same technique:
The function value must be equal to the limit
from any direction. If we combine all arguments
to a vector, i.e. x = (x1, x2, . . . , xn)T we write
in short:

lim
x→x0

f(x) = f(x0)

The term x→ x0 means that x approaches x0

from all directions and on any curve.

Example 4.9. Is the following function contin-
uous at x0 = (0, 0)?

f :


R2 → R
(x, y) 7→ 1 for x = y2, y > 0
(x, y) 7→ 0 else

The function value at x0 is zero since y = 0 ≯ 0.
We check the x-axis:

lim
x→0

f [(x, 0)] = 0

We check the y-axis:

lim
y→0

f [(0, y)] = 0

We are tempted to conclude that f is continuous
at x0, but this would be wrong: If we take the
limit towards x0 along the curve x = y2, y > 0
we get:

lim
ε→0+

f [(ε2, ε)] = 1 6= 0

Hence, the investigated function f is not con-
tinuous at x0 = (0, 0).

x

y

f = 1 on this line

f = 0 elsewhere

C

It seems an unsolvable task to check continu-
ity with limits on any curve. A technique to do
so is to transform the Cartesian coordinates to
polar coordinates around the investigated point
x0. However, we do not apply this technique
here.

The following theorem helps to analyse con-
tinuity for most applications.

Theorem 4.2 (Combined continuous func-
tions). Let f, g : Rn → R be continuous. If
defined, then f ± g, f · g, f/g and f ◦ g are
continuous too. C

Example 4.10. f :

 R2 → R

(x, y) 7→ sin(x) + y2

ey
is continuous since the function is a valid com-
bination of continuous functions. C

Example 4.11. f :

 R2 → R

(x, y) 7→ cos(xy)

x2 + y2

is continuous except for the point (0, 0) where
the denominator is zero. C

4.5. Partial derivative

For functions with one output the derivative
somehow represents the slope at any point.
For functions with one in- and output we took
the derivative only in one direction: towards
positive arguments. Taking the derivative to-
wards negative arguments would change the
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sign. E.g. driving up the hill means a posi-
tive slope whereas driving in the other direction
down the hill means a negative slope.

For a multiple input function we not only
have a the choice between positive and negative
direction but between an infinite number of di-
rections to take the derivative. Hence, we first
introduce the directional derivative towards a
given direction a before we take a more general
approach.

Definition 4.3 (Directional derivative). Let f :
Rn → R, (x1, . . . , xn) 7→ f(x1, . . . , xn) and a =
(a1, . . . , an) ∈ Rn. If it exits we call

∂f

∂a
= lim

h→0

f(x1+ha1,...,xn+han)− f(x1,...,xn)

h

directional derivative with respect to a. C

We may look at the directional derivative as
the slope on a hilly ground. Depending on
the direction the slope/derivative may turn out
quite different.

x

y

f(x, y)

a

∂f

∂a

We have a special interest in the direction of
the arguments of the function. I.e. we take
the derivative w.r.t. one input while keeping
the other inputs constant. These are the partial
derivatives of a function.

Definition 4.4 (Partial derivative). Let f :
Rn → R, (x1, . . . , xn) 7→ f(x1, . . . , xn) be a
function with n arguments. If it exists we call

∂f

∂xk
= lim

h→0

f(x + hek)− f(x)

h

= lim
h→0

f(x1,...,xk+h,...,xn)− f(x1,...,xn)

h

the partial derivative with respect to xk. C

x

y

f(x, y)

ex

ey

∂f

∂x ∂f

∂y

The partial derivative of a function f : Rn →
R again is a function with n arguments and one
value.

To derive the partial derivative with respect
to one argument we treat the other arguments
as constants.

Example 4.12. We evaluate all partial deriva-
tives of f(x, y, z) = xy + z2 and get:

∂f

∂x
= y

∂f

∂y
= x

∂f

∂z
= 2z

C

Example 4.13. The partial derivatives of the
function f(x, y, z) =

√
x2 + y2 + z2 are:

∂f

∂x
=

2x

2
√
x2 + y2

∂f

∂y
=

2y

2
√
x2 + y2

∂f

∂z
= 2z

C

Example 4.14. We evaluate all partial deriva-
tives of the function f(x, y, z) = x2 sin(y)ez and
get:

∂f

∂x
= 2x sin(y)ez

∂f

∂y
= x2 cos(y)ez

∂f

∂z
= x2 sin(y)ez

C

Differentiability in general may be derived as
for functions with one argument. However, as
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for continuity we must take all directions and
all possible paths towards the investigated point
into account.

Another approach is to approximate the func-
tion at the point of interest by a plane and to
investigate whether the remaining error tends
towards zero by a higher order than one.

It is left to the interested reader to study dif-
ferentiability by other sources.

4.6. Gradient

Definition 4.5 (Gradient). Let f : Rn → R be
a differentiable function with n Cartesian argu-
ments. Combining all partial derivatives to a
vector gives us

∂f

∂x1
e1 + . . .+

∂f

∂xn
en =


∂f
∂x1
...
∂f
∂xn


which we call the gradient of a function f . In
short we write

grad = ∇ =
∂

∂x1
e1 + . . .+

∂

∂xn
en =


∂
∂x1
...
∂
∂xn


with ∇ being the nabla-operator . We treat the
product of ∂

∂xk
and f as the partial derivative

of f with respect to xk. C

The gradient grad(f) of a function f at point
x gives the value and direction of maximum
slope of f .

Example 4.15. The shape of a parabola an-
tenna may be expressed by:

f :

{
R× R→ R
(x, y) 7→ x2 + y2

We express this function by a surface plot:

x

y

f(x, y)

The slope increases with distance to the z-
axis and points away from the z-axis.

∇f = grad(f) =
∂

∂x
f(x, y)ex +

∂

∂y
f(x, y)ey

= 2xex + 2yey

The gradient grad(f) has two in- and output
values. We use a vector plot to illustrate the
gradient:

x

y

C

4.7. Multiple partial derivative

We now want to evaluate the second partial
derivative of a function. For n arguments we
find n2 possible second partial derivatives.

Example 4.16. For the function

f :

{
R3 → R
(x, y, z) 7→ xy2z3

we want to find all possible second partial
derivatives. We first evaluate the first partial
derivatives:

∂f
∂x = y2z3 ∂f

∂y = 2xyz3 ∂f
∂z = 3xy2z2
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Now we take all second partial derivatives:

∂2f
∂x2

= 0 ∂2f
∂x∂y = 2yz3 ∂2f

∂x∂z = 3y2z2

∂2f
∂y∂x = 2yz3 ∂2f

∂y2
= 2xz3 ∂2f

∂y∂z = 6xyz2

∂2f
∂z∂x = 3y2z2 ∂2f

∂z∂y = 6xyz2 ∂2f
∂z2

= 6xy2z

C

Remark: We read the denominator backward.
I.e. for the second derivative below we take first
the derivative w.r.t. x and the second w.r.t. y:

∂2f

∂y∂x
=

∂

∂y

(
∂f

∂x

)

Combining all second partial derivatives leads
us to the Hessian matrix:

Definition 4.6 (Hessian matrix). The Hes-
sian matrix combines all possible second partial
derivatives of a multiple argument function into
a matrix. I.e. with

f :

{
Rn → R
(x1, . . . , xn) 7→ f(x1, . . . , xn)

we get

H =


∂2f
∂x12

. . . ∂2f
∂x1∂xn

...
. . .

...
∂2f

∂xn∂x1
. . . ∂2f

∂xn2


C

Example 4.17. The function

f :

{
R3 → R
(x, y, z) 7→ xy2z3

of the previous example results in the Hessian
matrix:

H =

 0 2yz3 3y2z2

2yz3 2xz3 6xyz2

3y2z2 6xyz2 6xy2z


C

The Hessian matrix of the previous example
is symmetric. This is not always the case. How-
ever, if all second partial derivatives of a func-
tion are continuous, then the Hessian matrix is
symmetric:

Theorem 4.7 (Symmetry of second deriva-
tives). Let

f :

{
Rn → R
(x1, . . . , xn) 7→ f(x1, . . . , xn)

be a function with continuous second partial
derivatives. Then the order of partial differen-
tiation may be interchanged, i.e.

∂

∂xj

(
∂f

∂xk

)
=

∂

∂xk

(
∂f

∂xj

)
for j, k = 1, . . . , n. This symmetry of second
derivatives is also known as the Schwarz inte-
grability condition. C

4.8. Extrema

We remember, for a single in- and output func-
tion f : R→ R we have a local maximum at x0

if all values f(x) in an environment x ∈ Uε(x0)
around the maximum are less or equal than the
value of the maximum. I.e.

f(x0) ≥ f(x) for x ∈ Uε(x0)

The corresponding is true for local minima.
The same principle holds for multiple argument
functions:

Definition 4.8 (Extrema of multiple argument
functions). Let D ⊆ Rn be the domain of a
multiple argument function f : D → R, x0 ∈ D
an element of the domain and Uε(x0) be the
epsilon neighbourhood around x0.

� If there exist an ε > 0 with f(x0) ≤ f(x)
for all x ∈ Uε(x0) we say x0 is a local min-
imum of f .

� If there exist an ε > 0 with f(x0) ≥ f(x)
for all x ∈ Uε(x0) we say x0 is a local max-
imum of f .

� If f(x0) ≤ f(x) for all x ∈ D we say x0 is
a global minimum of f .

� If f(x0) ≥ f(x) for all x ∈ D we say x0 is
a global maximum of f .

If x0 is a local minimum or a local maximum we
call it a local extremum. If x0 is a global min-
imum or a global maximum we call it a global
extremum. C
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Theorem 4.9 (Condition for extremum). If a
differentiable multiple argument function f :
Rn → R has a (local) extremum at x0 ∈ Rn
then all partial derivatives are zero at this point,
i.e.

∂f

∂xk

∣∣∣∣
x0

= 0 for k = 1, . . . , n

C

Zeros for all partial derivatives are a neces-
sary condition for an extremum, but not a suf-
ficient condition, see the following example.

Example 4.18. Does the function

f :

{
R2 → R
(x, y) 7→ x2 − y2 + 2

has an extremum at x0 = (0, 0)T ? We investi-
gate the partial derivatives at this point:

∂f

∂x

∣∣∣∣
x0

= 2x|x=0 = 0

∂f

∂y

∣∣∣∣
x0

= −2y|y=0 = 0

The necessary condition is given, however, a
plot reveals that the function has no extremum
at x0 = (0, 0)T but a saddle point :

x
−1−1

2
1
21 y

−1
−1

2

1
2

1

f(x, y)

2

3

4

Along the x-axis we find a minimum whereas
along the y-axis we find a maximum. There-
fore, for any environment Uε(x0) we find values
smaller and larger than the value at the inves-
tigated point. C

How do we find out if a point x0 is an ex-
tremum and whether it is a maximum or a min-
imum? A technique we will not focus on is to
check whether the Hessian matrix is positive
definite or negative definite. However, for most
applications it can easily be checked if the func-
tion value f(x0) is less or greater than its local
surrounding Uε(x0).

Example 4.19. We want to check the function

f :

{
R2 → R
(x, y) 7→ 2x− x2 + y − y2 − 1

2

for extrema. As a necessary condition the first
partial derivatives must be zero, hence:

∂f

∂x
= 2− 2x = 0

∂f

∂y
= 1− 2y = 0

Both partial derivatives are zero at x0 = (1, 1
2).

We create a contour plot around x0:

x0.5 1 1.5 2

y

−0.5

0

0.5

1

1.5

0.75

0.5

0.25

0.0
-0.25

Although a contour plot cannot serve as a
proof it becomes obvious that all function val-
ues around x0 are less than f(x0).

Another way to check the candidate x0 is to
add small values εx and εy to the values of x = 1
and y = 1

2 , respectively.

f(1+εx,
1
2 +εy) = 2(1+εx)− (1+εx)2

+ (1
2 +εy)− (1

2 +εy)
2 − 1

2

= . . . = 3
4 − ε

2
x − ε2

y

For any combination of εx and εy except both
being zero the function value becomes less than
at x0.

Hence, we found a maximum at x0 = (1, 1
2)

with value f(x0) = 0.75. C

4.9. Multiple value functions

Yet we focussed on single valued functions.
However, the arguments of a function may in-
fluence more than one value.

To differentiate a multiple value function we
treat each value of the function separately. For
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many questions we need the partial derivatives
for all values of the function which we combine
into a matrix:

Definition 4.10 (Jacobian matrix). Let f :
Rn → Rm be a function with n arguments
and m values and its component functions f =
(f1, . . . , fm), fk : Rn → R, k = 1, . . . ,m. We
define the Jacobian matrix as the combination
of all partial derivatives of the form:

J =


∂f1
∂x1

∂f1
∂x2

· · · ∂f1
∂xn

∂f2
∂x1

∂f2
∂x2

· · · ∂f2
∂xn

...
...

. . .
...

∂fm
∂x1

∂fm
∂x2

· · · ∂fm
∂xn


C

Example 4.20. We want to derive the Ja-
cobean matrix for the function

f :

{
R2 → R2

(x, y) 7→ (x sin(y), y cos(x))

and get:

J =

(
sin(y) x cos(y)
−y sin(x) cos(x)

)
C

4.10. Problems

Problem 4.1: Plot the following functions for
y-values of 0, 1, 2 and 3:

f :

{
(0, 1]× R→ R
(x, y) 7→ xy

g :

{
(0, 1]× R→ R
(x, y) 7→ xy/2

h :

{
[0, 2π]× R→ R
(x, y) 7→ e−y/2 sin(x)

i :

{
[0, 2π]× R→ R
(x, y) 7→ sin(xy/2)

Problem 4.2: Create contour plots with at
least three contour levels for the following func-
tions:

f(x, y) =
√

4− x2 − y2

g(x, y) =
√
x2 + y2

h(x, y) = x2 − y

Problem 4.3: Draw vector plots for the fol-
lowing functions:

f(x, y) = (−y, x)

g(x, y) = (x, y)

h(x, y) = (x,−y)

Problem 4.4: Which of the following func-
tions are continuous in their domain?

1. f :

{
R2 → R
(x, y) 7→ x2 − y2

2. f :

{
R2 → R
(x, y) 7→ ex sin2(y)

3. f :

{
R× R>0 → R
(x, y) 7→ arctan(ln(y))

x2+1

4. f :

{
R3 → R
(x, y, z) 7→ x2 − y2 + arctan(z)

5. f :

{
R3 → R
(x, y, z) 7→ sin2(x)+cos2(y)

sin(z)+2

6. f :

{
R4 → R
(f, t, δ, γ) 7→ sin(2πft)e−δt + γ

Problem 4.5: Evaluate the first derivatives
with respect to all arguments for the following
functions:

1. f(x, y, z) = x+ y2 + z3

2. f(x, y, z) = sin(xy) + cos(z2)

3. f(x, y, z) =
ex+y

z2 + z + 1

4. f(a, b, c, d) =
ab

cd
5. f(u, v, w) = ln(uw)− evw

6. f(α, β, γ) =
cos(2πα) + j sin(2πβ)

γ2

Problem 4.6: Evaluate the first derivatives
with respect to all arguments for the following
functions:

1. f(x, y) =
∑
k

(xk + yk)
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2. f(x, y) =
∑
k

(xy)k

3. f(x, y) =
∑
k

e−kxy

4. f(a0, a1) =
∑
k

(a1xk + a0 − yk)2

Problem 4.7: Evaluate the gradient for the
following functions:

1. f(x, y) = x+ y

2. f(x, y) =
√
x2 + y2

3. f(x, y, z) = x2ey + x3 cos(z)

Problem 4.8: Draw the gradient vector field
for the following functions:

1. f(x, y) = |x+ y|

2. f(x, y) =
√
x2 + y2

3. f(x, y) = sin(x) + y

Problem 4.9: Evaluate the Hessian matrix
for the following functions:

1. f(x, y) = x2y2

2. f(x, y) = xy

3. f(x, y) = sin(x) + cos(y)

4. f(x, y, z) = x2ey + y2 sin(z) + z2ex

Problem 4.10: Find extrema of the following
functions:

1. f(x, y) = x2 + y2 − x− y + 1
2

2. f(x, y) = e−x
2 − y2 + 2y

3. f(x, y) = 2x− x2 + 4y − y2

Problem 4.11: Evaluate the Jacobian matrix
for the following functions:

1. f(x, y) =

(
x2 + y2

xy

)

2. f(x, y) =

 sin(x) + cos(y)
x2y2

exy



3. f(x, y, z) =

 x+ y2 + z3

xey sin(z)
x2ey+z


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5. Differential equations

5.1. Introduction

Yet, when solving algebraic equations with un-
knowns the task was to find values for the un-
knowns that fulfil the expression. E.g. the
equation

x2 − x = 2

holds for x = 2 and x = −1.

In this chapter we extend our view on un-
knowns x to unknown functions y(x).

Example 5.1. Imagine a capacitor with capac-
itance C that has been charged to a voltage U0.

U0 C R

At time t = 0 the capacitor is switched to a
resistor with resistance R. How does the voltage
at the capacitor changes over time? I.e. we
search for the function u : R→ R, t 7→ u(t).

U0 C R

iC iR

u

The current into the resistor is given by:

iR =
u

R

The current into the capacitor is given by:

iC = C
du

dt
= Cu′

The sum of both currents must be zero, i.e.

iR + iC = 0
u

R
+ Cu′ = 0

Resolved to u′ and τ = RC we get a differential
equation DE:

u′ = − 1
τ u (DE)

Hence, we are searching for a function with the
first derivative being the function itself times a
negative factor of 1

τ . We find a candidate to be:

u = k e−t/τ u′ = −k
τ e
−t/τ

To verify our ansatz we insert u and u′ into our
DE:

−k
τ e
−t/τ = − 1

τ k e
−t/τ

which is true for all t ∈ R.
Since the voltage of the capacitor is inert the

voltage just after switching to the resistor still
is U0, i.e. u(0) = U0. Hence, k = U0 and we get
the solution:

u = U0 e
−t/τ

t

u

U0

0
0 τ

C

5.2. Definition of differential
equations, DE

In a differential equation (short: DE) the un-
known is a function y(x) rather than just a vari-
able x. The DE contains the function y(x) and
some derivatives of this function.

Definition 5.1 (Differential equation). For I
being an interval a differential equation, DE is
an equation containing one or more variables
x1, . . . , xp ∈ I, one or more functions of these
variables y1, . . . , yq, I

p → K and derivatives of

these functions y′k, . . . , y
(n)
k , k = 1, . . . , q. For

one variable and one function we write:

y(n) = F (x, y, y′, . . . , y(n−1))
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We call the order n of the highest occurring
derivative the order of the differential equation.
C

Example 5.2. Some differential equations:

1. y′′ = y′ − y + x

2. 2
∂f

∂x
− ∂f

∂y
+ f2 + sin(x)− cos(y) = 0

3. y′ +
√
y′ − y + x = 0

4. y′′ = −D
m
y

C

Definition 5.2 (Ordinary and partial DE).

A differential equation of a single argument
function f(x) is called ordinary differential
equation, ODE .

A differential equation of a multiple argument
function f(x1, . . . , xn) is called a partial differ-
ential equation. C

Example 5.3. In the previous example the
first, third and fourth DE are ordinary; only
the second DE is a partial DE. C

In this chapter we focus on ordinary differen-
tial equations, ODE.

Definition 5.3 (Explicit and implicit nota-
tion).

An ODE resolved to its highest derivative is
said to be in explicit notation, i.e.

y(n) = F (x, y, y′, . . . , y(n−1))

Otherwise the notation is called implicit no-
tation and it is often noted as:

F (x, y, y′, . . . , y(n)) = 0

C

Example 5.4. In example 5.2 the first and
fourth DE are in explicit notation, whereas the
third is in implicit notation. The second is a
partial DE where we do not distinguish between
explicit and implicit notation. C

Definition 5.4 (Linear DE). With I being an
interval, ak, b : I → R, k = 0, . . . , n being con-
tinuous and y : I → K, the equation

n∑
k=0

ak(x)y(k) = b(x), x ∈ I

or

any
(n) + . . .+ a1y

′ + a0y = b, x ∈ I

is said to be a linear differential equation. C

Example 5.5. In example 5.2 the first and
fourth DE are linear, whereas the second and
third are not linear. C

Definition 5.5 (Homogeneous DE). If a dif-
ferential equation (DE) can be expressed in the
form

n∑
k=0

ak(x)y(k)(x) = 0

we call it a homogeneous DE and an inhomoge-
neous DE otherwise. C

Remark: A similar definition holds for partial
differential equations. There all combinations of
derivatives w.r.t. the arguments of the unknown
function must be taken into account. However,
here the focus is on ODEs only.

Example 5.6. In example 5.2 only the fourth
DE is homogeneous; all other DEs are inhomo-
geneous. C

5.3. Solutions of DEs

A solution of a DE is a function y(x) for which
the DE is true over the investigated interval.
However, the solution may include one or more
parameters that influence the result.

In integral calculus, when integrating a func-
tion we have to add a unknown constant C. In-
tegrating a function n times leads to terms with
n unknown constants.

In the same manner the solution of an nth

order DE leads to an expression with n un-
knowns/parameters. The parameters may be
resolved by some boundary conditions for the
DE.
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Definition 5.6 (General and particular solu-
tion). We call the solution of an nth order DE
with n parameters a general solution of the DE.

If one or more of the parameters are set to
given values the solution is said to be a partic-
ular solution of the DE. C

Example 5.7. In the introductory example 5.1
we found the solution u = k e−t/τ with the pa-
rameter k which we call general solution of the
DE. We then realized that the voltage at the
capacitor at t = 0 is U0 and determined a par-
ticular solution to be u = U0 e

−t/τ . C

Theorem 5.7 (Number of parameters). An nth

order ODE without any further conditions has
a general solution with n parameters. C

For many applications some conditions are
given to further specify the solution of a DE.

For initial value problems some initial condi-
tions are given that define some or all of the pa-
rameters of the general solution. The introduc-
tory example 5.1 belongs to this type of prob-
lems.

For boundary problems some conditions at the
boundary of the domain are given that further
specify the solution.

Example 5.8. Radioactive decay.

Radioactive isotopes are unstable and their
nuclei change randomly by radioactive pro-
cesses. E.g. the carbon isotope 14C converts
to 14N by beta decay.

14
6C → 14

7N + e− + ν̄

In a given time interval there is a given prob-
ability that an atom decays. Experiments show
that 50% of a given number of 14C atoms decay
in app. 5 730 years. We call this the half-life
of the isotope since after this time one half of
original 14C-isotopes converted into other iso-
topes/elements.

Let’s say N is the number of atoms as a func-
tion of time. A change of N means a beta de-
cay including emission of electrons which can be
measured. The measured radiation is propor-
tional the number of atoms of 14C (e.g. double
mass results in double radiation). We get the
differential equation:

N ′ = −λN

where λ indicates the proportionality. Since the
DE is quite similar to the one in the introduc-
tory example we choose a similar ansatz:

N = c e−λt N ′ = −λc e−λt

Inserting into the DE

−λc e−λt = −λ c e−λt

reveals that this is an appropriate solution. λ
is related to the half-life t1/2:

1

2
=
N(t1/2)

N(0)
=
c e−λt1/2

c e−λ·0
= e−λt1/2

2 = eλt1/2

λ =
ln(2)

t1/2

Hence, the general solution for the DE is:

N(t) = c exp(− ln(2)t
t1/2

)

Since the DE is of order one, the solution has
also one parameter c. With the condition N0

as the number of atoms at t = 0, i.e.

N0 = N(0) = c exp(− ln(2)·0
t1/2

) = c

we get the particular solution:

N(t) = N0 exp(− ln(2)t
t1/2

)

t

N

0
0

N0

N0
2

t1/2

C

Example 5.9. Simple harmonic oscillator.
In mechanics a simple harmonic oscillator is

made of mass mounted to a spring:

D m

x0
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The force acting on the mass is proportional to
its displacement. When displaced by distance
x(t) the force of the spring acting on the mass
is

Fs = −Dx(t)

with D being the spring constant. In turn,
the force of inertia is the negative product of
mass m and acceleration a(t) which is the sec-
ond derivative of the displacement x(t):

Fi = −ma(t) = −md2x(t)

dt2
= −mx′′(t)

The sum of two the forces must be zero at all
times which leads to a second order DE:

Fs + Fi = 0

−Dx(t)−mx′′(t) = 0

x′′ = −D
mx

As an ansatz we choose:

x = x̂ sin(ωt+ ϕ0)

with x̂ ∈ R>0 as the amplitude of the displace-
ment, ω ∈ R>0 as the angular frequency and
ϕ0 ∈ (−π, π] as the phase at t = 0. This is one
parameter more than the order of the DE, how-
ever, one of them will disappear during further
calculations. We evaluate the second derivative

x′ = x̂ω cos(ωt+ ϕ0)

x′′ = −x̂ω2 sin(ωt+ ϕ0)

and insert x and x′′ into the DE:

x′′ = −D
mx

−x̂ω2 sin(ωt+ ϕ0) = −D
m x̂ sin(ωt+ ϕ0)

ω2 = D
m

The chosen ansatz holds only for ω2 = D
m , i.e.

the mass oscillates with an angular frequency:

ω =

√
D

m

Hence we found a general solution with the two
remaining parameters x̂ and ϕ0:

x = x̂ sin(ωt+ ϕ0) with ω =
√

D
m

For a particular solution we have to define two
independent conditions. E.g. we pull the mass

to position x0 and release it at t = 0 with an
initial velocity of v0 = 0:

x(0) = x0

v(0) = x′(0) = v0 = 0

We get:

x(t) = x0 sin(ωt+ π
2 ) = x0 cos(ωt)

tπ
ω

2π
ω

x0 cos(ωt)

−2

−1

1

2

x0=1

x0=2

x0=−1

x0=−2

T = 2π
ω

C

5.4. Creating DEs

We want to define a DE for a given general so-
lution. Although this is somehow the other way
round, we want to use this technique to get a
deeper understanding on differential equations.

Example 5.10. What is the DE for all cosine
functions with angular frequency 1 and ampli-
tude c?

y = c cos(x)

x−π π 2π

c cos(x)

c = 1
2

c = 1

c = 3
2

c = 2

c = −1
2

c = −1

c = −3
2

c = −2

First we take the first derivative of y:

y′ = −c sin(x)
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Then we resolve y = c cos(x) to c and insert it
into the equation for y′ in order to eliminate the
parameter c:

y′ = − y

cos(x)
sin(x) = −y tan(x)

y′ + y tan(x) = 0

This is a linear homogeneous ODE in implicit
notation. (The second last row is the same DE
in explicit notation.) C

For a given solution with n parameters we
create the DE by the following steps:

1. Evaluate n derivatives of the solution re-
sulting in n+ 1 equations.

2. Eliminate the n parameters which results
in a single equation without parameters.

Example 5.11. We take the general solution
of the harmonic oscillator in problem 5.9 and
take the first and second derivative:

x = x̂ sin(ωt+ ϕ0)

x′ = x̂ω cos(ωt+ ϕ0)

x′′ = −x̂ω2 sin(ωt+ ϕ0)

The two parameters are x̂ and ϕ0. We eliminate
them by inserting the equation for x into the
equation for x′′:

x′′ = −ω2x

This is a second order linear homogeneous ODE
in explicit notation. C

5.5. Problems

Problem 5.1: For I being an interval, x ∈ I
and y : I → R which of the following expres-
sions are differential equations?

1. y′′ − y′ + xy = 1

2. y2 − y + x = 0

3. y(2) − y + x = 0

4.
√
y′′ + 3xy = sin(x)

5.

n∑
k=0

aky
(k) = 0, ak ∈ R

6. y(n) +
n∑
k=1

(
y(k−1) − y(k)

)
= ex

Problem 5.2: Study the following DEs with
respect to order of DE, ordinary/partial DE,
explicit/implicit notation, linearity and homo-
geneity:

1. my′′ + ky′ +Dy = sin(x)

2.
∂f

∂x
− ∂f

∂y
= 0

3. 2x+ y2 − ∂f

∂x
+
∂2f

∂y2
= 0

4. y′′ =
√
x+ y

5.
n−1∑
k=0

aky
(k) = y(n)

6. y′ − y2 + x = 0

Problem 5.3: Which of the following terms
are general solutions and which of them are par-
ticular solutions for the given DEs?

1. y′ + ay = 0

a) y = C e−ax c) y = 3 e−ax

b) y = C eax d) y = ec−ax

2. y′ + y = e2x

a) y = 3e−x + 1
3e

2x c) y = 4 e−x

b) y = e2x d) y = Ce−x + 1
3e

2x

3. y′ = x y2

a) y = − 2

x2
c) y =

2

C − x2

b) y =
C

x2
d) y =

2

C + x2

Problem 5.4: Create a DE for the following
functions:

1. y(x) = c sin(x)

2. y(x) = a cosh(x)

3. y(x) = c eωx

4. y(x) = ax2

Problem 5.5: Create a DE for all functions
that form straight lines through the origin of a
Cartesian coordinate system.
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Problem 5.6: Create a DE for all parabo-
las symmetric around the ordinate and pass-
ing through the origin of a Cartesian coordinate
system.

Problem 5.7: Create a DE for all circles with
radius r around the origin of a Cartesian coor-
dinate system.
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6. First order differential equations

6.1. Introduction

In the previous chapter we solved already some
DEs. Yet, the ansätze were given by some un-
clear means.

In this chapter we look at some approaches
to find such an ansatz for DEs. We limit our-
selves to first order DEs. In the next chapter
we extend our view to higher order linear DEs
with constant coefficients.

In general we can express a first order differ-
ential equation by

F (y′, y, x) = 0

In explicit notation we write

y′ = F (y, x)

6.2. Geometric interpretation

We write the DE in explicit notation. In this
notation we can evaluate the slope (i.e. the
first derivative) for any combination of x and
y. Plotting the slopes for a number of points
gives an impression of the function y.

Example 6.1. We want to solve the DE:

y′ = y

First we plot the slope field and plot a possible
solution into it:

x

y

−2

−2

−1

−1

1

1

2

2

The dashed line is an exponential function
which seems to fit quite well. Hence we choose
as an ansatz:

y = c ex y′ = c ex

The ansatz solves the DE for any c ∈ R:

y′ = y ⇒ c ex = c ex

Hence, y = c ex is the general solution for the
DE.

For a particular solution we need a condition
like y(x0) = y0. E.g. for y(0) = 1

5 we get the
particular solution yp = 1

5 e
x (dashed line in the

diagram). C

6.3. Separation of variables

If it is possible to express a DE in the form of

y′ =
dy

dx
= g(x)h(y)

we can separate the variables x and y and inte-
grate them separately:

1

h(y)

dy

dx
= g(x)∫

1

h(y)

dy

dx
dx =

∫
g(x) dx∫

1

h(y)
dy =

∫
g(x) dx

Theorem 6.1 (Separation of variables 1). For
I being an interval, g, h : I → R and y : I → K,
y 6= 0 let

y′ = g(x)h(y)

be a DE in explicit notation. Then the general
solution can be evaluated by:∫

1

h(y)
dy =

∫
g(x) dx

C

Example 6.2. What is the general solution of

y′ − x2y2 − x2 = 0 ?
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We bring the equation into explicit notation and
separate the variables:

y′ = x2y2 + x2

y′ = x2(y2 + 1)

1

y2 + 1

dy

dx
= x2∫

1

y2 + 1

dy

dx
dx =

∫
x2 dx∫

1

y2 + 1
dy =

∫
x2 dx

arctan(y) = 1
3x

3 + C

y = tan
(

1
3x

3 + C
)

which is the general solution of the DE.

x−π
2

π
2

y

−2

−1

1

2

C=−1

C=−0.5

C=0

C=0.5

C=1

C

For a linear homogeneous DE

y′ = g(x) y

the function h(y) is the unit function, i.e.
h(y) = y and we can further simplify:

1

y

dy

dx
= g(x)∫

1

y

dy

dx
dx =

∫
g(x) dx∫

1

y
dy =

∫
g(x) dx

ln |y|+ C =

∫
g(x) dx

y = ± exp

(∫
g(x) dx− C

)
= ±e−C exp

(∫
g(x) dx

)
The left factor ±e−C is the parameter c for the
general solution. The constant of the integral
in the exponential function may be neglected
in this case since it acts like another constant
factor outside the exponential function. We get:

Theorem 6.2 (Separation of variables 2). For
I being an interval, g : I → R and y : I → K let

y′ = g(x)y

be a linear homogeneous DE (in explicit nota-
tion). We then get the general solution by:

y = c exp

(∫
g(x) dx

)
C

Example 6.3. What is the general solution for

y′ = x2y ?

We apply the second theorem for separation of
variables:

y = c exp

(∫
x2 dx

)
= c exp

(
1
3x

3
)

= c ex
3/3

x−2 −1 0 1 2

y

1

2

3

c=0.5

c=1

c=1.5

c=2

c=2.5

c=3

C

6.4. Variation of parameters

A homogeneous DE is easier to solve than an in-
homogeneous one. However, an inhomogeneous
DE may be solved in two steps:

First we solve the corresponding homoge-
neous DE and get the homogeneous solution yh.

Second we treat the parameters of the homo-
geneous solution yh as functions and and use
the modified yh as ansatz to solve the inhomo-
geneous DE.

For an inhomogeneous first order DE we ap-
ply the following procedure:

1. Find the general solution yh of the corre-
sponding homogeneous DE.

2. Treat the parameter c of yh as a function
c(x) (i.e. a parameter-function) and evalu-
ate its first derivative.

3. Insert the modified solution and its deriva-
tive into the DE and resolve the equation
for the parameter-function c(x).
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4. Combine the parameter-function c(x) with
the general solution yh of the homogeneous
DE as the general solution of the inhomo-
geneous DE.

Example 6.4. What is the general solution for

y′ = x+ y ?

We first evaluate the general solution for the
corresponding homogeneous DE y′ = y which
we found already in example 6.1:

yh = c ex

As an ansatz y for the inhomogeneous DE we
treat the parameter c as a function c(x) and
evaluate the first derivative of y:

y = c(x) ex y′ = c′(x)ex + c(x)ex

Inserting into the inhomogeneous DE results in:

y′ = x+ y

c′(x)ex + c(x)ex = x+ c(x) ex

c′(x) = x e−x

c(x) =

∫
x e−x dx

We integrate by parts with e−x being the deriva-
tive:

c(x) =

∫
x e−x dx = −x e−x +

∫
e−x dx

= −x e−x − e−x + C = C − e−x(x+ 1)

Inserting into the homogeneous solution results
in

y = c(x) ex = (C − e−x(x+ 1)) ex

= C ex − x− 1

which is the general solution of the inhomoge-
neous DE.

To remove any doubts we perform a test by
inserting the solution and its first derivative into
the inhomogeneous DE:

y = C ex − x− 1

y′ = C ex − 1

y′ = x+ y

C ex − 1 = x+ C ex − x− 1

which is true for any x ∈ R. Hence, with y =
C ex−x− 1 we found a general solution for the
inhomogeneous DE.

x−4 −2 2

y

−2

−1

1

2

C=−2
C=−1

C=0

C=1

C=2

C=3

C

6.5. Linear inhomogeneous DE

Theorem 6.3 (General plus particular solu-
tion). Let I be an interval, ak, f : I → R
(k = 0, . . . , n) be functions and y : I → K be
the unknown function. Let further the linear
inhomogeneous DE

n∑
k=0

ak(x)y(k)(x) = f(x), x ∈ I

has a particular solution y(x) = yp(x) and the
corresponding homogeneous DE

n∑
k=0

ak(x)y(k)(x) = 0, x ∈ I

has the general solution y(x) = yh(x). Then
the sum the two solutions yh(x) + yp(x) is the
general solution of the inhomogeneous DE:

y(x) = yh(x) + yp(x)
C

Proof. We insert the sum of the two solutions
into the DE:∑

k

ak(yh + yp)
(k) =

∑
k

ak

(
y

(k)
h + y(k)

p

)
=
∑
k

(
aky

(k)
h + aky

(k)
p

)
=
∑
k

aky
(k)
h +

∑
k

aky
(k)
p

= 0 + f(x) = f(x)

Example 6.5. We want to solve the DE:

y′ + xy + x = 0

48 August 15, 2022



First we solve the corresponding homogeneous
DE by separation of variables:

y′ + xy = 0

y′ = −xy

yh = c exp

(∫
−x dx

)
= c e−x

2/2

Next we solve the inhomogeneous DE by varia-
tion of parameters:

y = c(x) e−x
2/2

y′ = c′(x) e−x
2/2 − c(x)x e−x

2/2

Inserting into the DE:

c′ e−x
2/2 − c x e−x2/2 + x c e−x

2/2 + x = 0

c′ e−x
2/2 + x = 0

c′ = −x ex2/2

c = −
∫
x ex

2/2 dx

We substitute by u = x2/2. Since we search for
a particular solution only we neglect the inte-
gration constant:

u =
x2

2
u′ = x dx =

du

x

c = −
∫
x eu

du

x
= −

∫
eu du = −eu = −ex2/2

yp = c e−x
2/2 = −ex2/2 e−x2/2 = −1

Inserting yp into the DE reveals that −1 indeed
is a particular solution of the DE.

To get the general solution of the inhomoge-
neous DE we sum up the general solution of the
homogeneous DE and the particular solution of
the inhomogeneous DE:

y = yh + yp = c e−x
2/2 − 1

We perform a test:

y = c e−x
2/2 − 1 y′ = −cx e−x2/2

y′ + xy + x = 0

−cx e−x2/2 + x (c e−x
2/2 − 1) + x = 0

−cx e−x2/2 + xc e−x
2/2 − x+ x = 0

which is true for all x, c ∈ R.

x−2 −1 1 2

y

−3

−2

−1

1 C=2

C=1

C=0

C=−1

C=−2

C

6.6. Summary

In this chapter we looked at some techniques to
find solutions for first order DEs.

1. In explicit notation we gained a visual im-
pression by a slope diagram.

2. For DEs of type y′ = g(x)h(y) we per-
formed separation of variables.

3. For DEs of type y′ = g(x)y we found a
special form of separation of variables.

4. For inhomogeneous DEs we performed the
variation of parameters.

5. Finally we found the solution of a linear
inhomogeneous DE to be y(x) = yh(x) +
yp(x).

6.7. Problems

Problem 6.1: Draw the slope field for the
following DEs:

1. y′y − 1 = 0

2. y′x− x = 0

3. y′y + x = 0

Problem 6.2: Solve the following DEs by
separation of variables:

1. yy′ − 1 = 0

2. yy′ − x = 0

3. xy′ − y = 0

4. eyy′ − 1 = 0

5. y′ +
sin(2x)

y
= 0
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6. y′ + 2y2 = 0

Problem 6.3: Solve the following DEs by
separation of variables:

1. y′ + y = x2y 4. y′ + y sin(x) = 0

2. xy′ + 2x2y = y 5.
y′

cosh(x)
− y = 0

3. y′ + 3y
√
x = 0 6. 2xy′ − y = 0

Problem 6.4: Solve the following inhomoge-
neous DEs by variation of parameters:

1. xy′ − y = 1

2. xy′ + y = ex

3. xy′ + 2y = sin(x)

Problem 6.5: Solve by adding the general
homogeneous solution and a particular inhomo-
geneous solution:

1. xy′ + y = 1

2. y′ + 2y = cos(x)

3. y′ − y = ejx

Problem 6.6: For k ∈ R, n ∈ Z, n 6= −1 solve
the following DEs for y(x):

1. y′ − 3y = 0 4. x2y′ − 2y = 0

2. y′ + 3y = 0 5. y′ − ky = 0

3. y′ + x3y = 0 6. y′ − kxny = 0

Problem 6.7: Solve the following DEs:

1. y′ − y + x = 0 4.
y + 1

y′
= x

2. y′ + 2y = x2 5. y′ + y = x

3. x2y′ + y − 1 = 0 6.
y − 2x

y′
= 1
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7. Higher order linear differential equations

7.1. Introduction

With I being an interval and ak, f : I → R
(k = 0, . . . , n) a higher order (n > 1) linear DE
may be written as

n∑
k=0

ak(x)y(k)(x) = f(x)

We are particularly interested in linear DEs
with constant real coefficients, i.e.

n∑
k=0

aky
(k)(x) = f(x), ak ∈ R

Many engineering problems result in DEs of this
type.

We call f(x) the source term of the inhomo-
geneous DE. For homogeneous DEs the source
term is zero.

With D = d
dx as the differential operator we

write in short:

n∑
k=0

akD
ky = f(

n∑
k=0

akD
k

)
y = f

(anD
n + . . .+ a2D

2 + a1D + a0)y = f

In the brackets we find an nth order polynomial
with coefficients ak, k = 0, . . . , n which we ab-
breviate with Pn(D):

Pn(D) y = f

This is the inhomogeneous linear DE with con-
stant real coefficients. The corresponding ho-
mogeneous DE is given by:

Pn(D) y = 0

Theorem 7.1 (Linear combination of solu-
tions). Let y1 and y2 be two different solutions
of a linear homogeneous DE of order n, i.e.

Pn(D)y1 = 0 and Pn(D)y2 = 0

Then any linear combination of the solutions

y = C1 y1 + C2 y2, C1, C2 = const.

is also a solution of the DE, i.e.

Pn(D)y = Pn(D)(C1y1 + C2y2) = 0
C

Proof.

Pn(D)y = Pn(D) (C1y1 + C2y2)

=
n∑
k=0

ak(C1y1 + C2y2)(k)

=

n∑
k=0

ak(C1y
(k)
1 + C2y

(k)
2 )

= C1

n∑
k=0

aky
(k)
1 + C2

n∑
k=0

aky
(k)
2

= C1Pn(D)y1 + C2Pn(D)y2

= C1 · 0 + C2 · 0
= 0

Theorem 7.2 (Complex solution). Let I be an
interval, u, v : I → R and y = u + jv be a
complex solution of a linear homogeneous DE
of order n, i.e.

Pn(D)y = Pn(D)(u+ jv) = 0

Then the real and imaginary parts are also so-
lutions of the DE, i.e.

Pn(D)u = 0 and Pn(D)v = 0 C

Proof.

Pn(D)y = Pn(D)(u+ jv)

= Pn(D)u+ jPn(D)v = 0

Both, Pn(D)u and Pn(D)v are real. The sec-
ond term is multiplied by the imaginary unit j
becoming a pure imaginary term. A complex
number is zero if the real and the imaginary
part are zero, hence

Pn(D)u = 0 and Pn(D)v = 0

August 15, 2022 51



7.2. Second order homogeneous
DE with constant
coefficients

It is always possible to bring the DE into this
form:

y′′ + a1y
′ + a0y = 0

To solve an DE of this type the ansatz is:

y(x) = ekx, k ∈ K

We take the first and second derivative and in-
sert it into the DE:

y = ekx y′ = kekx y′′ = k2ekx

y′′ + a1y
′ + a0y = k2ekx + a1ke

kx + a0e
kx

= ekx(k2 + a1k + a0) = 0

We call the second factor the characteristic
polynomial :

p(k) = k2 + a1k + a0

The term ekx is never zero, hence, the charac-
teristic polynomial must be zero:

p(k) = k2 + a1k + a0 = 0

We call this the characteristic equation of the
DE. To find k we solve this second order poly-
nomial and get:

k1,2 = −a1

2
±
√
a1

2

4
− a0 (7.1)

For real coefficients this equation can have three
different types of solutions:

1. Two different real constants

2. A pair of complex conjugate constants

3. Two equal real constants

We have to treat these three types separately:

7.2.1. Two different real constants

The argument of the root in (7.1) is positive:

a1
2

4
− a0 > 0 ⇔ a1

2 > 4a0

In this case we found two independent solu-
tions for the DE, i.e.

y1 = ek1x and y2 = ek2x

The general solution is any linear combination
of these solutions:

y = C1e
k1x + C2e

k2x (7.2)

with k1,2 = −a1

2
±
√
a1

2

4
− a0

7.2.2. Pair of complex conjugate
constants

The argument of the root in (7.1) is negative:

a1
2

4
− a0 < 0 ⇔ a1

2 < 4a0

For this important case in engineering we may
write:

k1,2 = −a1

2
±
√
a1

2

4
− a0 = −σ ± jω

with σ =
a1

2
and ω =

√
a0 −

a1
2

4
. The general

solution is:

y = C1 e
k1x + C2 e

k2x

= C1 e
(−σ+jω)x + C2 e

(−σ−jω)x

= e−σx(C1 e
jωx + C2 e

−jωx)

With Euler’s formula ejωx = cos(ωx)+j sin(ωx)
we get

y = e−σx
(
C1

(
cos(ωx) + j sin(ωx)

)
+ C2

(
cos(ωx)− j sin(ωx)

))
= e−σx

(
(C1 + C2) cos(ωx)

+ (C1 − C2) j sin(ωx)
)

= e−σx
(
A cos(ωx) + jB sin(ωx)

)
where A = C1 +C2 and B = C1−C2. Since for
a complex solution the real and imaginary part
are both solutions of the DE we may write:

y = e−σx
(
A cos(ωx) +B sin(ωx)

)
(7.3)

with σ =
a1

2
and ω =

√
a0 −

a1
2

4

7.2.3. Two equal real constants

The argument of the root in (7.1) is zero:

a1
2

4
− a0 = 0 ⇔ a1

2 = 4a0
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For the constants k1 and k2 we get:

k1 = k2 = −σ = −a1

2

Applying the same technique as before would
result in the solution C e−σx with only one pa-
rameter. This is not the general solution since
we expect for a second order DE a general so-
lution with two parameters.

In order to find a general solution we apply
the variation of parameters:

y = Ce−σx

y′ = C ′e−σx − Cσ e−σx = (C ′ − σC)e−σx

y′′ = (C ′′ − σC ′)e−σx − (C ′ − σC)σe−σx

= (C ′′ − 2σC ′ + σ2C)e−σx

Inserting into the DE gives:

y′′ + a1y
′ + a0y = 0

(C ′′ − 2σC ′ + σ2C)e−σx+

a1(C ′ − σC)e−σx + a0Ce
−σx = 0

C ′′ + (a1 − 2σ)C ′ + (σ2 − a1σ + a0)C = 0

With σ = a1/2 and a1
2 = 4a0 the two brackets

become zero and we get

C ′′ = 0

Integrating twice results in

C(x) = C1x+ C2

and we get the general solution

y = (C1x+ C2)e−σx with σ =
a1

2
(7.4)

Example 7.1. Damped harmonic oscillator.
We want to analyse a damped harmonic oscilla-
tor with spring, mass and damper.

D

V

m

x

Fs

Ff

Fi

The damper adds the force of friction Ff .
With the spring constant D in N/m, the vis-
cous damping coefficient V in Ns/m and the

mass m in Ns2

m =kg we get three forces which in

sum must be zero. With v = dx
dt = x′ as the

velocity and a = d2x
dt2

= x′′ as the acceleration
we get:

Fi + Ff + Fs = 0

−ma− V v −Dx = 0

−mx′′ − V x′ −Dx = 0

x′′ + V
mx
′ + D

mx = 0

This is a second order linear homogeneous DE
with constant real coefficients. For the coeffi-
cients k1 and k2 we get:

char. eq.: k2 +
V

m
k +

D

m
= 0

k1,2 = − V

2m
±
√

V 2

4m2
− D

m

Now we distinguish the three possible solutions:

Two different real coefficients
If the viscous damping coefficient V is com-
parable large, i.e.

V 2

4m2
>
D

m
⇔ V > 2

√
Dm

then k1 and k2 are two different real num-
bers. We get

x(t) = C1e
k1t + C2e

k2t

with C1 and C2 being two real numbers.

t

x

V > 2
√
Dm

C1 < 0
C2 > 0
k1 > k2

|C1| = |C2|

|C1| < |C2|

|C1| > |C2|

Pair of complex conjugate constants
If the viscous damping coefficient V is com-
parable small, i.e.

V 2

4m2
<
D

m
⇔ V < 2

√
Dm

then k1 and k2 are a pair of complex con-
jugate numbers. With

σ =
V

2m
and ω =

√
D

m
− V 2

4m2
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we get

x(t) = e−σt(C1 e
jωt + C2 e

−jωt)

or if we limit ourself to real functions:

x(t) = e−σt{A cos(ωt) +B sin(ωt)}

with C1, C2, A,B ∈ R.

t

x

V < 2
√
Dm

Two equal real coefficients
If the viscous damping coefficient is
2
√
Dm, i.e.

V 2

4m2
=
D

m
⇔ V = 2

√
Dm

then k1 and k2 are two equal real numbers:

k1 = k2 = −σ = − V

2m

and we get

x(t) = C1 e
−σt +C2t e

−σt = (C1+C2t) e
−σt

with C1 and C2 being real numbers.

t

x

V = 2
√
Dm

σ = 1
C1 = 1

C2 = 2

C2 = 1

C2 = 0

C2 = −1

C

7.2.4. Summary

We solve a second order linear homogeneous DE
with constant real coefficients

y′′ + a1y
′ + a0y = 0

with the ansatz y = ekx which leads us to the
characteristic equation k2 + a1k+ a0 = 0 which
we solve to:

k1,2 = −a1

2
±
√
a1

2

4
− a0

Depending on the argument of the root we dis-

tinguish three types of solutions. With σ =
a1

2
,

ω =

√
a0 −

a1
2

4
and C1, C2, A,B ∈ R we get:

case solution

a1
2 > 4a0 y(x) = C1e

k1x + C2e
k2x

a1
2 < 4a0 y(x) = e−σx(C1e

jωx + C2e
−jωx)

y(x) = e−σx(A cos(ωx) +B sin(ωx))

a1
2 = 4a0 y(x) = (C1 + C2x)e−σx

For the case a1
2 < 4a0 the first solution is a

complex valued function, i.e. y : I → C.

7.3. Higher order homogeneous
DE with constant
coefficients

We apply the same approach as for a second
order DE. For an nth order linear homogeneous
DE with constant real coefficients we write

y(n) + an−1y
(n−1) + . . .+ a1y

′ + a0y = 0

With the ansatz y = ekx we get an nth order
characteristic polynomial :

p(k) = kn + an−1k
n−1 + . . .+ a1k + a0

Setting p(k) to zero gives the characteristic
equation:

p(k) = kn + an−1k
n−1 + . . .+ a1k + a0 = 0

We now have to find the roots of the charac-
teristic polynomial, i.e. all possible solutions of
the characteristic equation. We know by the
fundamental theorem of algebra that the equa-
tion must have n zeros. For real coefficients we
will find real zeros or pairs of complex conjugate
zeros.

We now have to distinguish the different
types of solutions for k:

1. For n different real zeros k1, k2, . . . , kn the
general solution is

y(x) = C1e
k1x + C2e

k2x + . . .+ Cne
knx
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2. For a pair of complex conjugate zeros

kk = −σ + jω and kk+1 = −σ − jω

we combine them to the term

e−σx{Ck cos(ωx) + Ck+1 sin(ωx)}

3. For multiple zeros, e.g. an m-fold zero kk
we use the term

(Ck + Ck+1x+ . . .+ Ck+m−1x
m−1)ekkx

Example 7.2. The DE

y′′′ − 2y′′ − y′ + 2y = 0

has the characteristic equation

k3 − 2k2 − k + 2 = 0

with the zeros

k1 = −1, k2 = 1, k3 = 2

and the solution

y(x) = C1 e
−x + C2 e

x + C3 e
2x

C

Example 7.3. We want to solve the DE

4y(4) + 12y′′′ + 17y′′ + 14y′ + 5y = 0

Dividing by 4 gives:

y(4) + 3y′′′ +
17

4
y′′ +

7

2
y′ +

5

4
y = 0

The characteristic equation

k4 + 3k3 +
17

4
k2 +

7

2
k +

5

4
= 0

has zeros at:

k1,2 = −1, k3,4 = −1

2
± j

We have a double zero at −1 and a pair of com-
plex conjugate zeros −1

2 ± j which we have to
treat separately. We get

y(x) = (C1 + C2x)e−x

+ e−x/2{C3 cos(x) + C4 sin(x)}
C

7.4. Higher order inhomogeneous
DE with constant
coefficients

We write the inhomogeneous linear DE with
constant real coefficients as

y(n) + an−1y
(n−1) + . . .+ a1y

′ + a0y = s(x)

where we call s(x) the source term.
In the previous chapter we learned: For an in-

homogeneous linear DE the sum of a particular
solution yp and the general solution yh of the
corresponding homogeneous DE is the general
solution of the investigated DE:

y(x) = yh(x) + yp(x)

This theorem holds for any order of the DE.
Hence, we use three steps to solve an inhomo-
geneous linear DE:

1. Find the general solution yh of the corre-
sponding homogeneous DE.

2. Find any particular solution yp of the inho-
mogeneous DE.

3. Take the sum of the two solutions as the
general solution of the inhomogeneous DE.

The solution yh of the corresponding homo-
geneous DE may be evaluated as described in
the previous section.

The ansatz to find a particular solution yp of
the inhomogeneous DE depends on the source
term s(x) and there is no general technique to
find an appropriate ansatz. Hence, we concen-
trate on some typical source terms.

7.4.1. Polynomial source term

If the source term s(x) is an mth order polyno-
mial, i.e.

s(x) = S0 + S1x+ S2x
2 + . . .+ Smx

m

we choose as ansatz for the particular solution
yp an mth order polynomial too:

yp(x) = s0 + s1x+ s2x
2 + . . .+ smx

m

We insert this polynomial into the DE to evalu-
ate the coefficients s0, . . . , sm. In the ansatz all
coefficients must be present, even if the source
term does not include all coefficients S0, . . . , Sm.
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Example 7.4. We want to solve the DE

y′′ + 3y′ + 2y = 2x− 1

The corresponding homogeneous DE has the
characteristic equation k2 + 3k + 2 = 0 with
the two zeros at −1 and −2, which leads us to
the general homogeneous solution:

yh = C1 e
−x + C2 e

−2x

Since the source term of the inhomogeneous DE
is a first order polynomial we choose as ansatz a
first order polynomial too. We insert the ansatz
with its derivatives into the DE:

yp = s0 + s1x y′p = s1 y′′p = 0

0 + 3s1 + 2(s0 + s1x) = 2x− 1

2s1x+ (2s0 + 3s1) = 2x− 1

Comparing the coefficients of the two polyno-
mials results in two equations which we resolve
for s1 and s0:

2s1 = 2
2s0 + 3s1 = −1

⇒ s1 = 1
s0 = −2

which gives us the particular solution

yp = x− 2

The sum of the general homogeneous solution
and the particular inhomogeneous solution gives
the general inhomogeneous solution:

y(x) = C1 e
−x + C2 e

−2x + x− 2
C

If the chosen polynomial leads to a contradic-
tion, we increase the order of the polynomial.

Example 7.5. We want to solve the DE

y′′ + 2y′ = x

The corresponding homogeneous DE has the
characteristic equation k2 +2k = 0 with the two
zeros at −2 and 0, which leads to the general
homogeneous solution:

yh = C1 e
−2x + C2

Since the source term of the inhomogeneous DE
is a first order polynomial we choose as ansatz a
first order polynomial too. We insert the ansatz
with its derivatives into the DE:

yp = s0 + s1x y′p = s1 y′′p = 0

0 + 2s1 = x

This expression cannot be true for all x, hence
we choose an ansatz with increased order:

yp = s0 + s1x+ s2x
2

y′p = s1 + 2s2x

y′′p = 2s2

2s2 + 2(s1 + 2s2x) = x

4s2x+ (2s2 + 2s1) = x

Comparing the coefficients of the two polyno-
mials results in two equations which we resolve
for s1 and s2:

4s2 = 1
2s1 + 2s2 = 0

⇒ s2 = 1
4

s1 = −1
4

We get a particular solution:

yp = 1
4x

2 − 1
4x+ s0

The particular solution is valid for any value of
s0. For convenience we set s0 to zero and get:

yp = 1
4x

2 − 1
4x

The sum of the general homogeneous solution
and the particular inhomogeneous solution gives
the general inhomogeneous solution:

y(x) = yh + yp = C1 e
−2x + C2 + 1

4x
2 − 1

4x
C

7.4.2. Exponential source term

If the source term is an exponential function,
i.e.

s(x) = Aebx

then we choose as ansatz for the particular so-
lution yp an exponential function with the same
exponent, i.e.

yp = a ebx

The ansatz equals the source term except for
another factor a. We insert the ansatz into the
DE to derive the factor a.

Example 7.6. We want to solve the DE

y′′ − y = 4 e−3x

The corresponding homogeneous DE has the
characteristic equation k2 − 1 = 0 with the two
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zeros at ±1 which leads to the general homoge-
neous solution:

yh = C1 e
−x + C2 e

x

We choose a e−3x as ansatz for the particular
solution of the inhomogeneous DE and take two
derivatives:

yp = a e−3x y′p = −3a e−3x y′′p = 9a e−3x

Inserting into the DE gives:

y′′ − y = 4 e−3x

9a e−3x − a e−3x = 4 e−3x

9a− a = 4

a =
1

2

yp =
1

2
e−3x

This leads us to the general solution of the in-
homogeneous DE:

y = yh + yp = C1 e
−x + C2 e

x +
1

2
e−3x

C

7.4.3. Trigonometric source term

If the source term is a trigonometric function,
i.e.

s(x) = A cos(ωx) +B sin(ωx)

then we choose as ansatz for the particular so-
lution yp:

yp = a cos(ωx) + b sin(ωx)

The sine and cosine functions must be both
present, even if only one of them is present as
source term. We evaluate the constants a and
b by inserting the ansatz into the DE.

Example 7.7. We want to solve the DE

y′′ + 3y′ + 2y = 5 cos(2x)

The corresponding homogeneous DE has the
characteristic equation k2 + 3k + 2 = 0 with
the two zeros at −1 and −2 which leads us to
the general homogeneous solution:

yh = C1 e
−x + C2 e

−2x

We choose a cos(2x)+b sin(2x) as ansatz for the
particular solution of the inhomogeneous DE
and take two derivatives:

yp = a cos(2x) + b sin(2x)

y′p = −2a sin(2x) + 2b cos(2x)

y′′p = −4a cos(2x)− 4b sin(2x)

Inserting into the DE gives:

y′′ + 3y′ + 2y = 5 cos(2x)

−4a cos(2x)− 4b sin(2x)

+3(−2a sin(2x) + 2b cos(2x))

+2(a cos(2x) + b sin(2x)) = 5 cos(2x)

(6b− 2a) cos(2x)

+(−6a− 2b) sin(2x) = 5 cos(2x)

This equation is true if it holds separately for
the sine and cosine terms. We get two equations
for two unknowns:

−2a+ 6b = 5
−6a− 2b = 0

⇒ a = −1
4

b = 3
4

yp = −1
4 cos(2x) + 3

4 sin(2x)

This leads us to the general solution of the in-
homogeneous DE y = yh + yp:

y = C1 e
−x + C2 e

−2x − 1
4 cos(2x) + 3

4 sin(2x)

C

7.4.4. Source term as a sum of functions

If the source term is a sum of two other known
source terms we may treat them separately and
add the particular solutions.

Theorem 7.3 (Sum of source terms). Let y1(x)
and y2(x) be solutions of a linear inhomoge-
neous DE with constant coefficients and the
source terms s1(x) and s2(x), respectively:

Pn(D)y1 = s1 and Pn(D)y2 = s2

Then y(x) = y1(x) +y2(x) is the solution of the
DE with the source term s(x) = s1(x) + s2(x),
i.e.

Pn(D)(y1 + y2) = s1 + s2 C

Proof.

Pn(D)y = Pn(D) (y1 + y2)

=

n∑
k=0

ak(y1 + y2)(k)

=

n∑
k=0

ak(y
(k)
1 + y

(k)
2 )
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=
n∑
k=0

aky
(k)
1 +

n∑
k=0

aky
(k)
2

= Pn(D)y1 + Pn(D)y2

= s1 + s2

Example 7.8. We want to solve the DE

y′′ + 2y′ + y = e2x + x− 1

The corresponding homogeneous DE has the
characteristic equation k2 + 2k + 1 = 0 with a
double zero at −1 which leads us to the general
homogeneous solution:

yh = (C1x+ C2) e−x

For the first summand of the source term:

yp1 = a e2x y′p1 = 2a e2x y′′p1 = 4a e2x

y′′p1 + 2y′p1 + yp1 = e2x

4a e2x + 2 · 2a e2x + a e2x = e2x

4a+ 4a+ a = 1

a = 1
9

yp1 = 1
9 e

2x

For the second summand of the source term:

yp2 = s0 + s1x y′p2 = s1 y′′p2 = 0

y′′p2 + 2y′p2 + yp2 = x− 1

0 + 2s1 + s0 + s1x = x− 1

s1x+ 2s1 + s0 = x− 1

s1 = 1
2s1 + s0 = −1

⇒ s1 = 1
s0 = −3

yp2 = x− 3

The particular solution of the original DE is

yp = yp1 + yp2 = 1
9 e

2x + x− 3

The general solution y = yh + yp:

y(x) = (C1x+ C2) e−x + 1
9 e

2x + x− 3

C

7.4.5. DE in resonance

If the source term equals one of the particular
homogeneous solutions, the DE is said to be in
resonance.

The ansätze listed above will not lead to the
desired result. When inserting into the DE we
will end at a contradiction like 0 = f(x) or 0 =
1.

To solve the DE we use the appropriate
ansatz from above and perform variation of pa-
rameters.

Example 7.9. We want to solve the DE

y′′ + 3y′ + 2y = e−x

The corresponding homogeneous DE has the
characteristic equation k2 + 3k + 2 = 0 with
the two zeros at −1 and −2 which leads to the
general homogeneous solution:

yh = C1 e
−x + C2 e

−2x

We first try the standard ansatz:

yp1 = ae−x y′p1 = −a e−x y′′p1 = a e−x

y′′p1 + 3y′p1 + 2yp1 = e−x

a e−x − 3a e−x + 2a e−x = e−x

a− 3a+ 2a = 1

0 = 1 ???

This is obviously wrong. We take the second
ansatz and treat the parameter a as a function:

yp2 = a e−x

y′p2 = a′ e−x − a e−x

= (a′ − a) e−x

y′′p2 = (a′′ − a′) e−x − (a′ − a) e−x

= (a′′ − 2a′ + a) e−x

y′′p2 + 3y′p2 + 2yp2 = e−x

(a′′ − 2a′ + a) e−x + 3(a′ − a) e−x

+2a e−x = e−x

(a′′ − 2a′ + a) + 3(a′ − a) + 2a = 1

a′′ + a′ = 1

Since we are looking for a particular solution
yp(x) we try to find a simple solution for a(x).
Integrating both sides ginves us a′+ a = x+C.
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A simple solution is a(x) = x which we insert
into the particular solution:

yp2 = x e−x

The general solution of the DE y = yh + yp2 is:

y(x) = C1 e
−x + C2 e

−2x + x e−x

= (C1 + x) e−x + C2 e
−2x

C

7.5. Problems

Problem 7.1: Solve the following DEs and
check your solution:

1. y′′ + y′ − 2y = 0

2. y′′ − y = 0

3. y′′ − 2y′ + y = 0

4. y′′ + 2y′ + 2y = 0

5. y′′ = 4y

6.
y′′

y′
+

y

4y′
= 1

7.
4y′

y
=

4y′′

y
+ 5

8. 2y′ = y′′ + 10y

Problem 7.2: Solve the following DEs and
check your solution:

1. y′′′ + 6y′′ + 11y′ + 6y = 0

2. y(4) − 5y′′ + 4y = 0

3. y′′′ − y′′ + y′ − y = 0

4. y′′′ + 3y′′ + 4y′ + 2y = 0

5. y(4) + y = 2y′′

6. y(4) + 2y′′ + 5y = 8y′

Problem 7.3: Solve the following DEs:

1. y′′ + 3y′ + 2y = 2x+ 1

2. y′′ + 2y′ + y = x+ 2

3. y′′ + 2y′ + 2y = 2(1− x)

4. y′′′ + y + 3(y′′ + y′) + x2 = 0

5. y(4) + 7y′′ + 10y = 5 + 18y′

6.
4y′′

y
+ x3/y = 1

Problem 7.4: Solve the following DEs:

1. y′′ + y′ − 2y = 2 e3x

2. y′′ + 4y = 8 e−2x

3. y′′ − 4y′ + 4y = 3e−x

4. y′′′ + y′ = y′′ + y + 3 e−2x

5. (2y′′ − y′ − y) e2x = 9

Problem 7.5: Solve the following DEs:

1. y′′ − 4y = 5 sin(x)

2. y′′ + y + 4 cos(x) = 2y′

3. y′′ + 4y = 5 cos(3x)

4. y′′ − 2y′ + 5y = sin(x) + 2 cos(x)

5. y′ + y = sin(−2x)

6. y′′′ + 3(y′′ + y′) + y = 2 cos(x)− 2 sin(x)

Problem 7.6: Solve the following DEs:

1. y′′ + 2y′ − 3y = e−x − 3x

2. y′′ + 9y = 8 sin(x) + 6 e3x

3. y′′ + 4(x2 − y) + cos(x) = 0

4. y′′′+4y′′+5y′+2y = 2x2+10x+8+12 ex

Problem 7.7: Solve the following DEs:

1. y′ + 2y = e−2x

2. y′′ + 4(y + cos(2x)) = 0

3. y′′ + y′ − 6y + 3 e−3x = 0

4. y′′′ + 4y′′ + 5y′ + 2y = 2 e−x
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8. Combinatorics

8.1. Permutations

Definition 8.1 (Permutation). We call the ar-
rangement of n items into a definite order per-
mutation. C

Theorem 8.2 (Permutations of different
items). The number of permutations for n dif-
ferent items is:

Pn = n!

C

Example 8.1. There are six options to bring
three different balls into an order:

1

2

3

1

2

3 1

2

3 1

2

3 1

2

3

1

2

3

C

Example 8.2. There are 6! = 720 different op-
tions to place six students on six chairs. C

Theorem 8.3 (Permutations with multiples).
The number of permutations of n items with k
of them being equal is.

Pn,k =
n!

k!

C

Example 8.3. For n = 3 different balls there
are n! = 6 options to bring them into an order.
If k = 2 of the three balls have the same colour,
there are only n!/k! = 3 options remaining:

1

2

3

1

2

3 1

2

3 1

2

3 1

2

3

1

2

3

⇒
R

G

G

R

G

G R

G

G

C

Example 8.4. A waiter wants to place 10
plates on a table. Six plates are white, the other
plates are red, green, blue and yellow. There are
10!
6! = 5040 options to lay out the table. C

Theorem 8.4 (Permutations with multiple
multiples). The number of permutations for n
items containing m ki-multiples, i = 1 . . .m
with

∑m
i=1 ki = n is:

Pn,k1,k2,...,km =
n!

k1!k2! . . . km!

C

Example 8.5. For n = 4 balls with different
colours there are 4!

1!·1!·1!·1! = 24 options to bring
them into an order, see figure 8.1 left.

If two of them have the same colour the num-
ber of permutations reduce to 4!

1!·1!·2! = 12, see
figure 8.1 middle.

If another two balls have the same colour
the number of permutations reduce further to

4!
2!·2! = 6, see figure 8.1 right. C

Example 8.6. In Germany playing lotto is
about choosing six numbers out of 49 where the
order of the chosen numbers do not play a role.

Let n = 49 be the number of all possible num-
bers, k1 = 6 be the number of chosen numbers
and k2 = 43 the number of not-chosen numbers.
The number of possible choices is:

nchoices =
n!

k1!k2!
=

49!

6! · 43!
= 13 983 816

The chance of being the happy winner is:

1

nchoices
≈ 7 · 10−8 = 0.000 007%

C

8.2. Combinations

Definition 8.5 (Combination). A combination
is a selection of k items out of n different items
neglecting the order. We call it a combination
of class k with or without replacement. C

Remark: With replacement means a selected
item is put back before the next selection takes
place. Hence, the number of selections may be
larger than the total number of items.

Unlike to the previous section we neglect the
order of the selected items.
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4!
1!·1!·1!·1! = 24

1 2 3 4

1 2 34

1 23 4

1 23 4

1 2 34

1 234

12 3 4

12 34

12 3 4

12 3 4

12 34

12 34

1 23 4

1 23 4

123 4

123 4

1 23 4

123 4

1 2 34

1 234

12 34

12 34

1 234

1234

4!
1!·1!·2! = 12

1 2 3 4

1 2 34

1 23 4

1 23 4

1 2 34

1 234

12 3 4

12 34

12 3 4

12 3 4

12 34

12 34

1 23 4

1 23 4

123 4

123 4

1 23 4

123 4

1 2 34

1 234

12 34

12 34

1 234

1234

⇓

4!
2!·2! = 6

1 2 3 4

1 2 34

1 23 4

1 23 4

1 2 34

1 234

12 3 4

12 34

12 3 4

12 3 4

12 34

12 34

1 23 4

1 23 4

123 4

123 4

1 23 4

123 4

1 2 34

1 234

12 34

12 34

1 234

1234

⇓

Figure 8.1.: Permutations of 4 balls

Theorem 8.6 (Combinations without replace-
ment). The number of combinations to choose
k items out of n different items without replace-

ment is:

Cn,k =
n!

k!(n− k)!

C

Example 8.7. For an election of a steering
committee with four members out of 10 candi-
dates the number of different formations of the
committee is:

C10,4 =
10!

4! · (10− 4)!
= 210

C

Definition 8.7 (binomial coefficient). We de-
fine (

n

k

)
=

n!

k!(n− k)!

as the binomial coefficient and read ’n choose
k’. C

Example 8.8. We analyse again the German
lotto. Choosing k=6 numbers out of n=49 dif-
ferent numbers results for the number of com-
binations:

Cn,k =

(
49

6

)
=

49!

6!(49− 6)!
= 13 983 816

C

Theorem 8.8 (Combinations with replace-
ment). The number of options to choose k items
out of n different items with replacement is:

Cn,k =

(
n+ k − 1

k

)
=

(n+ k − 1)!

k!(n− 1)!

C

Example 8.9. What is the number of different
outcomes when throwing two six-sided dice?

Here the items are the numbers one to six, i.e.
n = 6. The number of choices are the number
of throws, i.e. k = 2. Hence, the total number
of different outcomes is:

C6,2 =

(
6 + 2− 1

2

)
=

(6 + 2− 1)!

2!(6− 1)!
= 21
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C

8.3. Variations

Definition 8.9 (Variations). A variation is a
selection of k out of n different items with
or without replacement minding the order of
items. I.e. variations are combinations minding
the order of items. C

Theorem 8.10 (Variations without replace-
ment). The number of variations for a selection
of k items out of n different items without re-
placement is:

Vn,k = k!

(
n

k

)
=

n!

(n− k)!

C

Example 8.10. We again look at an election
of a steering committee with four members out
of 10 candidates. This time the roles within
the steering committee are chairman, his/her
representative, the treasurer and the secretary.
The number of different possible formations of
the committee is:

V10,4 = 4!

(
10

4

)
=

10!

(10− 4)!
= 5 040

C

Theorem 8.11 (Variations with replacement).
The number of variations for a selection of k
items out of n different items with replacement
is:

Vn,k = nk

C

Example 8.11. A four bit binary number may
be looked at as four selections from the set
{0, 1} with replacement. I.e. either the one or
the zero is selected, but then replaced so that
both items are available for the next selection.
The number of variations is:

V2,4 = 24 = 16

0000 0100 1000 1100

0001 0101 1001 1101

0010 0110 1010 1110

0011 0111 1011 1111
C

8.4. Summary

Summary of the equations for combinatorics:

recurrence
without with

permutations Pn = n! Pn,k =
n!

k!

combinations Cn,k =

(
n

k

)
Cn,k=

(
n+k−1

k

)
variations Vn,k=k!

(
n

k

)
Vn,k = nk

8.5. Problems

Problem 8.1: How many options are there to
place eight people on eight chairs?

Problem 8.2: For a race with ten participants
how many different placings are there for place
one (fastest) to ten (slowest).

Problem 8.3: How many options are there
to place two women and two men on six chairs
w.r.t. to their gender?

Problem 8.4: How many different values can
a byte-variable (8 bits) have with exactly four
bits being one?

Problem 8.5: Assuming a painter has eight
different colours available and uses three differ-
ent of them to mix a new colour. If he always
takes the same amount of each colour (e.g. 1 ml
from each of the three colours) how many dif-
ferent colours is he able to create?
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Problem 8.6: Out of 9 different fruits you
choose four different to prepare a fruit salad.
How many options do you have?

Problem 8.7: Yahtzee (in Germany Kniffel)
is a famous game with five dice. How many dif-
ferent combinations are there for a single throw?

Problem 8.8: How many different outcomes
are expected throwing a coin six times neglect-
ing the order of outcomes?

Problem 8.9: How many different options
would the German lotto (6 out of 49 different
numbers) have if the order is minded?

Problem 8.10: For a hundred meter sprint
how many options are there for eight runners
to take the positions one, two and three?

Problem 8.11: For a number system with
base n, how many different numbers can be ex-
pressed with k digits?

Problem 8.12: A manager has to delegate
four different tasks to his twelve staff members.
Each task requires only one staff member and
a staff member may take more than one task.
How many options does the manager have?
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9. Probability theory

9.1. Introduction

When dealing with functions any valid input
leads to a unique output. E.g. sin(π/6) has the
unique value 1

2 and nothing else. Applying a
function to an input is a deterministic process.

Throwing an unbiased six-sided die results in
an unpredictable number between one and six.
We do not know in advance whether the number
one will appear, however, we expect on average
for every sixth throw a one. Throwing a die is
a stochastic process.

Example 9.1. Deterministic and stochastic in-
juries.

In medicine when exposed to some ionizing
radiation (e.g. x-rays) we distinguish between
deterministic and stochastic injuries.

Deterministic injuries appear for higher ra-
diation doses and have symptoms like skin red-
ness, skin burn etc. An increase of dose leads
to a higher degree of injury.

Stochastic injuries appear also for low dose
levels. In many cases the patient will experience
no symptoms at all. However, the risk to get
an injury like cancer increases. For a given dose
level the injury can not be predicted. However,
the probabilities are studied and are subject to
further investigations. C

Although we can not predict the particular
outcome of a stochastic process, it is possi-
ble to analyse the probability of such processes.
The knowledge of probabilities supports deci-
sion making in many situations. Here is one
example:

Example 9.2. Monty Hall problem.

In a famous quiz-show as the winner of the
day you get the chance to win a brand new

Mercedes by the following game: You enter a
room with three doors. Behind one door there
is the Mercedes, whereas each of the other two
doors hide a goat. The rules of the game are as
follows:

� First you choose one of the doors without
opening it.

� Then the show-master (who knows where
the Mercedes is) opens one of the other
doors with a goat behind it.

� Finally you can either open the door of
your first choice, or you change your mind
and open the other not yet opened door. If
you find the Mercedes, it’s yours!

The question is: Should you keep your first
choice, or should you open the other yet closed
door? Which door has the higher probability to
hide the Mercedes?

Suppose you chose door 1 and the show-
master opened door 2 revealing a goat. You
then have the choice between door 1 or 3. Let
A1, A2 and A3 be the events that the Mercedes
is behind door 1, 2 and 3, respectively. Let fur-
ther be P(Ak) the probability that the Mercedes
is behind door k (k = 1, 2, 3). The question is:

� P(A1) > P(A3) ?

� P(A1) = P(A3) ?

� P(A1) < P(A3) ?

1 2 3

Discuss with you neighbour! C
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9.2. Sample, sample space and
event

When dealing with a stochastic process we per-
form some sort of experiment. Since the out-
put of the process varies we perform a number
of experiments to gain an understanding of the
process.

For further discussion we first need to define
some terms:

Definition 9.1 (Sample, sample space, event).
We call the outcome of a stochastic experi-

ment a sample ω.
The set of all possible different samples forms

the sample space Ω.
We call any subset of the sample space an

event A. C

Example 9.3. A standard six-sided die has the
sample space

Ω = {1, 2, 3, 4, 5, 6}.

We now may define several events, e.g.

� the event of throwing an even number, i.e.

Aeven = {2, 4, 6} ⊆ Ω

� the event of throwing an odd number, i.e.

Aodd = {1, 3, 5} ⊆ Ω

� the event of throwing a particular number:

Ak = {k} ⊆ Ω for k = 1, . . . , 6

� the event of throwing a number greater
than three:

A>3 = {4, 5, 6} ⊆ Ω

Performing experiments give particular sam-
ples. E.g. throwing a die ten times may give
the samples 1, 4, 3, 2, 6, 4, 4, 6, 3 and 6. C

Example 9.4. Throwing a coin with heads and
tails (H,T) twice has the sample space

Ω = {(H,H), (H,T ), (T,H), (T, T )}

Some possible events are:

� the event of throwing the same face twice:

Aequal = {(H,H), (T, T )} ⊆ Ω

� the event of throwing different faces:

Aunequal = {(H,T ), (T,H)} ⊆ Ω

� the event of throwing heads first:

AHX = {(H,H), (H,T )} ⊆ Ω

Performing five experiments, i.e. throwing a
coin ten times in total may result in the samples
(T, T ), (T,H), (T,H), (H,T ) and (T,H). C

Example 9.5. For the lifetime of light bulbs in
hours we have the sample space

Ω = R≥0

We may define the following events:

� ADOA = {x ∈ R | 0 ≤ x < 100}
the event of dead on arrival.

� Ashort = {x ∈ R | 100 ≤ x < 800}
the event of short lifetime.

� Atyp = {x ∈ R | 800 ≤ x < 1200}
the event of typical lifetime.

� Along = {x ∈ R | x ≥ 1200}
the event of long lifetime.

Investigating the lifetime of 100 light bulbs of a
particular type may result in:

event samples

DOA 4
short 12
typical 71
long 13

C

Definition 9.2 (finite, countable, continuous).
We call a sample space with finite (or infinite)
number of elements a finite sample space (or
infinite sample space).

We call a infinite sample space Ω with count-
able (or uncountable) elements countable sam-
ple space (or uncountable sample space).

An infinite uncountable sample space is called
continuous sample space.

A finite sample space or infinite countable
sample space is called discrete sample space. C

Remark: A finite sample space implies a
countable sample space.
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Example 9.6.

� The sample space when throwing a coin has
the two elements heads and tails, i.e.

Ω = {H,T}

It is a finite, hence discrete sample space.

� A standard six-sided die has the sample
space with six elements:

Ω = {1, 2, 3, 4, 5, 6}

It is a finite, hence discrete sample space.

� The sample space for the number of mea-
sured quanta per second is the set of natu-
ral numbers including zero:

Ω = {0, 1, 2, 3, . . .} = N ∪ {0}

It is an infinite, countable and, hence, dis-
crete sample space.

� The time until disintegration of a radioac-
tive atom has the sample space

Ω = R≥0

It is an infinite, uncountable and, hence,
continuous sample space.

C

If we perform an experiment and get a sample
ω which is an element of the event A, i.e. ω ∈ A,
then we say: The event A took place.

Since sample space Ω and events Axyz are
sets, we may apply the same calculation rules
as for sets.

Example 9.7.
With the definitions of example 9.3 we have:

� A1 ∪Aeven = {1, 2, 4, 6}

� Aeven ∩A>3 = {4, 6}

� Aodd = Aeven = Ω \Aeven = {1, 3, 5}

� Aodd \A1 = {3, 5}

� 2 ∈ Aeven, 2 /∈ Aodd

� {1, 2} ⊆ Ω, {5, 6, 7} * Ω

� Aodd ∩Aeven = {} = ∅

� Aodd ∪Aeven = Ω

C

Definition 9.3 (Mutual exclusivity). If the in-
tersection of two events A and B is an empty
set, i.e.

A ∩B = ∅

then we say the two events are mutually exclu-
sive. I.e. a sample ω is either an element of
A or an element of B but never an element of
both. C

9.3. Probability

Although we can not predict the outcome of a
stochastic experiment, we may know the proba-
bility of a given event.

E.g. for an unbiased six-sided die we expect
the probability to throw a six to be 1

6 , i.e. 162
3%.

On average every 6th throw should result in a
six.

But what is probability and how can we de-
fine it?

9.3.1. Frequentist probability

Definition 9.4 (Frequentist probability). For
n experiments with n samples let nk be the
number of samples being elements of the event
Ak. We define the probability P(Ak) of the
event Ak as

P(Ak) = lim
n→∞

nk
n

C

Example 9.8. When throwing an unbiased six-
sided die what is the probability Aeven of throw-
ing even numbers?

We perform an increasing number of experi-
ments n and plot after every throw the quotient
of the number of even numbers neven and the
total number of experiments n, i.e. neven

n into a
diagram.
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n0 20 40 60 80 100

neven

n

0

0.2

0.4

0.6

0.8

1

The more experiments we perform, the closer we
get to the precise probability of P(Aeven) = 0.5.
C

It becomes obvious that the probability has
a value between zero an one:

0 ≤ P(A) ≤ 1

9.3.2. Probability axioms

We now build our understanding of probability
on the three axioms by Andrey Kolmogorov:

Definition 9.5 (Probability axioms). With
X being a stochastic experiment with sample
space Ω and events Ak, k ∈ N we define the
probability P(Ak) by the following axioms:

Axiom 1: For all Ak ⊆ Ω we have
P(Ak) ∈ R≥0

Axiom 2:
P(Ω) = 1

Axiom 3: If A1 ∩A2 = ∅ then
P(A1 ∪A2) = P(A1) + P(A2)

C

9.3.3. Calculating with probabilities

We now derive a number of calculation rules for
probability:

Theorem 9.6 (Calculating with probabilities).
For two events A and B of a sample space Ω we
have:

� P(A) = 1− P(A)

� A ⊆ B ⇒ P(A) ≤ P(B)

� P(A ∪B) = P(A) + P(B)− P(A ∩B)

� P(A \B) = P(A)− P(A ∩B)

C

A B

A \B A ∩B B \A

Example 9.9. For an unbiased six-sided die we
have P(A6) = 1

6 as the probability to throw a
six, P(Aeven) = 1

2 as the probability to throw an
even number and P(A>4) = 1

3 as the probability
to throw a number greater than four.

� The probability to throw a number less or
equal to four is

P(A>4) = 1− P(A>4) = 1− 1
3 = 2

3

� Since A6 is a subset of A>4 we have

A6 ⊆ A>4 ⇒ P(A6) ≤ P(A>4)

{6} ⊆ {5, 6} ⇒ 1
6 ≤

1
3

� The probability to throw an even number
or a number larger than 4:

P(Aeven ∪A>4)

= P(Aeven) + P(A>4)− P(Aeven ∩A>4)

= 1
2 + 1

3 −
1
6 = 2

3

� The probability to throw an even number
that is not larger than 4:

P (Aeven \A>4)

= P(Aeven)− P(Aeven ∩A>4)

= 1
2 −

1
6 = 1

3

C

9.3.4. Conditional probability

Conditional probability is the probability of an
event A under the condition, that event B is
given. We denote it by P(A|B) or PB(A).

Theorem 9.7 (Conditional probability). The
probability of an event A under the condition
of event B is given by

P(A|B) =
P(A ∩B)

P(B)
for P(B) 6= 0

C
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We can imagine conditional probability as the
probability with reduced sample space. It is a
reduced event A′ = A ∩ B in a reduced sample
space Ω′ = B.

Ω

A B

⇒ A′

Ω′

Example 9.10. What is the probability for an
unbiased six-sided die to throw an even number
under the condition that the number must be
larger than 3?

With Aeven as the event of throwing an even
number and A>3 as the event of throwing a
number larger than 3 we get:

P(Aeven|A>3) =
P(Aeven ∩A>3)

P(A>3)
=

1
3
1
2

=
2

3

This is obviously true since in the set of num-
bers larger than 3 (i.e. {4, 5, 6}) two of three
numbers are even. C

There are situations where conditional proba-
bilities are given and unconditional probabilities
need to be evaluated. We rewrite the equation
of theorem 9.7 to:

P(A ∩B) = P(A|B) · P(B)

If we want to know the probability of an event
A but we know only the probabilities under the
condition B and B we can use this method.
Since

A = (A ∩B) ∪ (A ∩B)

and
(A ∩B) ∩ (A ∩B) = ∅

we can write

P(A) = P((A ∩B) ∪ (A ∩B))

= P(A ∩B) + P(A ∩B)

P(A) = P(A|B)P(B) + P(A|B)P(B)

Theorem 9.8 (Sum of conditional probabili-
ties). If B1, B2, . . . are mutually exclusive and
their union equals the sample space, i.e. for
every experiment exactly one of the events
B1, B2, . . . must occur, then we have:

P(A) =
∑
k

P(A ∩Bk) =
∑
k

P(A|Bk)P(Bk)

C

Example 9.11. In a company machines 1 and 2
produce 30% and 70% of the overall production
with 5% and 2% failure rate, respectively. a)
What is the overall failure rate? b) For a failed
sample, what is the probability that it has been
produced by machine 1?

We define B1 and B2 as the events that a
product is produced by machine 1 or 2, respec-
tively. We get

P(B1) = 0.3 P(B2) = 0.7

Any sample is either produced by machine 1
or by machine 2 – never by both, i.e. B1 and B2

are mutually exclusive and their union equals
the sample space.

With the event of failure A we have the two
conditional probabilities

P(A|B1) = 0.05

P(A|B2) = 0.02

Question a):

P(A) = P(A ∩B1) + P(A ∩B2)

= P(A|B1)P(B1) + P(A|B2)P(B2)

= 0.05 · 0.3 + 0.02 · 0.7 = 0.029 = 2.9%

Question b):

P(B1|A) =
P(B1 ∩A)

P(A)
=

P(A|B1)P(B1)

P(A)

=
0.05 · 0.3

0.029
=

15

29
≈ 0.52 = 52%

C

9.3.5. Independence

In the previous examples we saw that the condi-
tional probability of an event A may differ from
its unconditional probability. However, if the
unconditional probability of an event A equals
the probability of A under the condition of B,
then we say the two events A and B are inde-
pendent.

Definition 9.9 (Independence). Let A and B
be two events. If the probability P(A) equals
the conditional probability P(A|B), i.e.

P(A) = P(A|B)

then we say A and B are independent events.
C
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Example 9.12. An aircraft passenger has been
caught having a bomb (without fuse) in his lug-
gage. When taken to task he replied: “I took
the bomb with me since it is more unlikely to
have two bombs on one plane than only one.”
Where is the mistake in his argument?

Let A be the event that a terrorist places a
bomb into the plane and B the event that the
passenger takes his bomb with him.

The passenger argues that

P(A ∩B) ≤ P(A)

which is true since (A ∩ B) ⊆ A. However, as-
suming that the caught passenger and the po-
tential terrorist do not influence each other, the
two events A and B are independent and we
get:

P(A) = P(A|B)

Hence, the caught passenger is wrong and he
can not influence the probability the terrorist
placing a bomb into the plane. C

9.4. Problems

Problem 9.1: For the sample space and the
events

Ω = {1, 2, 3, A,B,C}
AL = {A,B,C}
AN = {1, 2, 3}
Ak = {k} for k = 1, 2, 3, A,B,C

find the following sets in extensional definition.

1. AL ∪AN 4. AB \AN
2. AL ∩AN 5. Ω \AL
3. A1 6. (AC ∪AN ) \A2

Problem 9.2: What does mutual exclusivity
mean?

Problem 9.3: For the mutually exclusive
events A and B with the probabilities P(A) =
0.2 and P(B) = 0.3 resolve the following expres-
sions.

1. P(A) 4. P(A \B)

2. P(A ∪B) 5. P(B \A)

3. P(A ∩B) 6. P(A \B)

Problem 9.4: For the two events A and B
with the probabilities P(A) = 0.3, P(B) = 0.5
and P(A ∩ B) = 0.2 resolve the following ex-
pressions.

1. P(A ∪B) 4. P(A ∩B)

2. P(A \B) 5. P(A ∩B)

3. P(B \A) 6. P(A \B)

Problem 9.5: For the two events A and B
with the probabilities P(A) = 0.3, P(B) = 0.5
and P(A∩B) = 0.2 find the conditional proba-
bilities.

1. P(A|B) 2. P(B|A)

Problem 9.6: For the two mutually exclusive
events A and B find the conditional probabili-
ties.

1. P(A|B) 2. P(B|A)

Problem 9.7: The machines 1, 2 and 3 of a
light bulb manufacturer produce 20%, 30% and
50% of the overall production with 5%, 3% and
2% failure rate, respectively.

a) What is the overall failure rate?

b) For a failed light bulb what are the prob-
abilities that it has been produced by machine
1, 2 or 3?

Problem 9.8: The number of road deaths in
Germany split into age groups for 2010 were:

no. age population road deaths

1 < 15 10,941,200 104
2 15− 25 9,136,400 791
3 25− 65 44,829,800 1,842
4 65 ≤ 16,844,300 910

a) Find the probabilities for a person to be in
age group 1 to 4.

b) For each age group find the probability for
a person to die due to road death.

c) Find the overall probability of road death
by the results of a) and b).

August 15, 2022 69



d) By the results of a) to c) what is the prob-
ability of a road fatality to be in age group 1 to
4?

Problem 9.9: For the two events A and B we
have P(A) = 0.5, P(B) = 0.3 and P(A ∩ B) =
0.15. Are the two events A and B indepen-
dent?

70 August 15, 2022



10. Stochastic

10.1. Random variable

10.1.1. Definition of random variables

When dealing with stochastic processes we are
often interested in values of the random process
in terms of real numbers. E.g. when throwing
a six-sided die we are interested in the number
on the upper side.

Some stochastic outputs are no numbers, e.g.
favourite colours, types of mobiles produced or
the two faces of a coin. However, in many situ-
ations the outputs can be replaced by numbers.
E.g. for a coin heads may be given a one and
tails a zero.

Definition 10.1 (Random variable). We call
a stochastic process with sample space Ω ⊆ R
containing real numbers only a random vari-
able.

A random variable with discrete sample space
is called discrete random variable.

A random variable with continuous sample
space is called continuous random variable. C

We denote a random variable by an upper
case letter, e.g. X.

Definition 10.2 (Cumulative distribution
function). We define the cumulative distribu-
tion function or just distribution function F (x),
x ∈ R of a random variable X by

F (x) = P(X ≤ x)

I.e. the cumulative distribution function F (x)
is the probability for X being less or equal to x.
C

Example 10.1. The cumulative distribution
function of an unbiased six-sided die with the
numbers one to six is given by:

F (x) =



0 for x < 1
1/6 for 1 ≤ x < 2
1/3 for 2 ≤ x < 3
1/2 for 3 ≤ x < 4
2/3 for 4 ≤ x < 5
5/6 for 5 ≤ x < 6
1 for 6 ≤ x

The dots in the following diagram indicate func-
tion values at points of discontinuities:

x1 2 3 4 5 6

F (x)

0

1

C

Definition 10.3 (Probability mass function).
For a discrete random variable X with sample
space Ω we define the probability mass function
p(x) as:

p :

{
Ω→ R
x 7→ P(X = x)

C

Example 10.2. An unbiased six sided die with
the numbers 1 to 6 has the following probability
mass function:

p(x) =

{
1/6 for x = 1, 2, . . . , 6
0 otherwise

0 x

p(x)

1
6

1 2 3 4 5 6

C

Definition 10.4 (Probability density func-
tion). For a continuous random variable X with
sample space Ω ⊆ R the probability density
function f : Ω → R is a function with its in-
tegral from −∞ to x being the cumulative dis-
tribution function F (x), i.e.

F (x) =

∫ x

−∞
f(x′) dx′

C
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Both, the probability mass function p(x) and
the probability density function f(x) are non-
negative.

p(x) ≥ 0 f(x) ≥ 0 for all x ∈ Ω

The sum of all probabilities of a probability
mass function p(x) must be one:∑

Ω

p(x) =
∑

Ω

P (x=X) = 1

The definite integral of a probability density
function f(x) over its entire sample space Ω ⊆ R
must be one: ∫

Ω
f(x) dx = 1

With f(x) = 0 for all x /∈ Ω we have:∫ ∞
−∞

f(x) dx = 1

Example 10.3. A continuous random variable
X has the sample space Ω = [0, 2) with all val-
ues having the same probability. We then have
the cumulative distribution function F (x) and
the probability density function f(x):

F (x) =


0 for x < 0
x
2 for 0 ≤ x < 2
1 otherwise

f(x) =

{
1
2 for 0 ≤ x < 2
0 otherwise

x0 2

F (x)

1

x0 2

f(x)

1
2

C

For a continuous random process X the prob-
ability of the event a ≤ X ≤ b can be visualized
as the area between the abscissa and the prob-
ability density function on the interval [a, b]:

xa b

f(x)

P(a≤X≤b)

For a probability density function f(x) the
probability of a particular value x0 is zero:

P(X = x0) = 0

Hence, for a continuous random variable X the
probability of X being less than a limit x and
the probability of X being less or equal to x are
the same:

P(X < x) = P(X ≤ x) for X being cont.

10.1.2. Characteristics of random
variables

Definition 10.5 (Expectation). The expecta-
tion µ of a discrete random variable X with
sample space Ω = {x1, x2, . . . , xn} and proba-
bility mass function p(x) is defined by

µ = E(X) =
n∑
k=1

xk P(X=xk) =
n∑
k=1

xk p(xk)

where E is the expectation operator .

The expectation µ of a continuous random
variable X with sample space Ω = R and prob-
ability density function f(x) is defined by:

µ = E(X) =

∫ ∞
−∞

x f(x) dx

C

The expectation of of a random variable X
yields no information about the variation of X.
A useful quantity is the average value of the
square of the difference between X and its ex-
pectation µ:
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Definition 10.6 (Variance and standard devi-
ation). For X being a random variable with ex-
pectation µ we define the variance σ2 = Var(X)
as:

σ2 = Var(X) = E[(X − µ)2]

We call the square root of the variance σ =√
Var(X) the standard deviation of X around

its expectation µ. C

For a discrete random variable X with sample
space Ω = {x1, x2, . . . , xn}, probabilities p(xk),
k = 1, 2, . . . , n and expectation µ we get:

σ2 = Var(X) = E[(X − µ)2]

=
n∑
k=1

(xk − µ)2p(xk)

For a continuous random variable X with
sample space Ω = R, probability density func-
tion f(x) and expectation µ we get:

σ2 = Var(X) = E[(X − µ)2]

=

∫ ∞
−∞

(x− µ)2f(x) dx

Both, variance and standard deviation cannot
be negative, i.e. σ2 ≥ 0 and σ ≥ 0.

Example 10.4. For an unbiased six-sided die
with numbers one to six we have:

Ω = {1, 2, 3, 4, 5, 6}
xk = k for k = 1, . . . , 6

E(X) = µ =

6∑
k=1

xk P(X=xk) =

6∑
k=1

k
1

6

=
1

6
· 6(6 + 1)

2
= 31

2

Var(X) =
6∑

k=1

(xk − µ)2P(X=xk)

=

6∑
k=1

(k − 31
2)2 1

6

=
2

6
(2.52 + 1.52 + 0.52) =

35

12
≈ 2.92

σ =
√

Var(X) =

√
35

12
≈ 1.71

C

Example 10.5. For an unbiased six-sided die
with numbers 1, 1, 1, 2, 2 and 3 we have:

Ω = {1, 2, 3}

x1 = 1 x2 = 2 x3 = 3

p(x1) = 1
2 p(x2) = 1

3 p(x3) = 1
6

µ = E(X) =
3∑

k=1

xk P(X = k) =

3∑
k=1

k p(k)

= 1 · 1
2 + 2 · 1

3 + 3 · 1
6 = 12

3

σ2 = Var(X) =
3∑

k=1

(xk − µ)2P(X=xk)

=
3∑

k=1

(k − 12
3)2p(k)

=
(

2
3

)2 · 1
2 +

(
1
3

)2 · 1
3 +

(
4
3

)2 · 1
6

=
5

9
≈ 0.556

σ =
√

Var(X) =

√
5

3
≈ 0.745

C

Example 10.6. A continuous random variable
X has the probability density function f(x):

f(x) =


1 + x for − 1 ≤ x < 0
1− x for 0 ≤ x < 1
0 otherwise

x−1 0 1

f(x)

1

What is the expectation, variance and standard
deviation?

µ = E(X) =

∫ ∞
−∞

x f(x) dx

=

∫ 0

−1
x(1 + x) dx+

∫ 1

0
x(1− x) dx

=
[

1
2x

2 + 1
3x

3
]0
−1

+
[

1
2x

2 − 1
3x

3
]1
0

= −1
2 + 1

3 + 1
2 −

1
3 = 0

σ2 = Var(X) =

∫ ∞
−∞

(x− µ)2 f(x) dx

=

∫ 0

−1
x2(1 + x) dx+

∫ 1

0
x2(1− x) dx

=
[

1
3x

3 + 1
4x

4
]0
−1

+
[

1
3x

3 − 1
4x

4
]1
0

= 1
3 −

1
4 + 1

3 −
1
4 = 1

6 ≈ 0.167

σ =
√

Var(X) =
1√
6
≈ 0.408

C
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10.1.3. Modified random variable

Theorem 10.7 (Modified random variable).
Let X be a random variable with expectation
µ, variance σ2 and standard deviation σ. Let
further be

X ′ = aX + b for a, b ∈ R

be a random variable equal to X scaled by a
with offset b.

We then have for the expectation µ′, variance
σ′2 and standard deviation σ′ of X ′:

µ′ = aµ+ b σ′2 = a2σ2 σ′ = |a|σ

C

Example 10.7. An unbiased six-sided die has
the numbers 0, 2, 4, 6, 8 and 10. What is the
expectation µ, variance σ2 and standard devia-
tion σ?

For an unbiased six-sided die Xprev with the
numbers one to six we know from example 10.4

µprev = 31
2 , σ2

prev = 35
12 and σprev =

√
35
12 .

We realize that:

X = aXprev + b with a=2 and b=−2

Hence we get:

µ = aµprev + b = 2 · 31
2 − 2 = 5

σ2 = a2σ2
prev = 22 · 35

12 = 35
3 ≈ 11.67

σ = |a|σprev = 2
√

35
12 =

√
35
3 ≈ 3.416

C

Example 10.8. A continuous random variable
X has the probability density function f(x):

f(x) =


4x− 2 for 1

2 ≤ x < 1
6− 4x for 1 ≤ x < 3

2
0 otherwise

x1
2 1 3

2

f(x)

2

What is the expectation µ, variance σ2 and
standard deviation σ?

We realize that the probability density func-
tion equals the one from example 10.6 except
for a factor a = 1

2 and an offset of b = 1. With
µ′, σ′2 and σ′ as the expectation, variance and
and standard deviation of example 10.6 we get:

µ = 1
2µ
′ + b = 0 + 1 = 1

σ2 = (1
2)2σ′2 = 1

4 ·
1
6 = 1

24 ≈ 0.042

σ = 1
2σ
′ =

1

2
√

6
≈ 0.204

C

10.1.4. Sum of random variables

Theorem 10.8 (Expectation of two random
variables). With X and Y being two random
variables we have

E(X + Y ) = E(X) + E(Y )

C

Before analysing the variance of the sum of
two random variables X and Y we have to in-
troduce the concept of covariance:

Definition 10.9 (Covariance). With two ran-
dom variables X and Y and their expectations
µX and µY , respectively, we define

Cov(X,Y ) = E[(X − µX)(Y − µY )]

as the covariance of X and Y . C

A useful expression for the covariance is given
by

Cov(X,Y ) = E[(X − µX)(Y − µY )]

= E[XY −XµY − Y µX + µXµY ]

= E[XY ]−µY E[X]−µXE[Y ]+µXµY

= E[XY ]− µY µX − µXµY + µXµY

= E[XY ]− µXµY
= E[XY ]− E[X] E[Y ]

Theorem 10.10 (Variance of two random vari-
ables). The variance of the sum of two random
variables X and Y is given by:

Var(X+Y ) = Var(X) + Var(Y ) + 2 Cov(X,Y )

C
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Theorem 10.11 (Independent random vari-
ables). With X and Y as two independent ran-
dom variables we have:

Cov(X,Y ) = 0

Var(X+Y ) = Var(X) + Var(Y )

C

Definition 10.12 (Correlation). With X and
Y being two random variables with their stan-
dard deviations σX and σY , respectively, we de-
fine the correlation as

Corr(X,Y ) =
Cov(X,Y )√

Var(X) Var(Y )
=

Cov(X,Y )

σXσY

We get: Corr(X,Y ) ∈ [−1, 1] C

Example 10.9. Let’s assume a survey under
all first term students about their attitude to-
wards maths and whether they are musicians or
not. The outcome of the survey was:

like math don’t like math

musician 28% 12%

not musician 33% 27%

We define AX as the event to be a musician
and AY as the event of loving math. We give be
musician and like maths the value one and the
other the value zero to get two random variables
X and Y . With pXY we get:

x1 = y1 = 1 x2 = y2 = 0

p11 = 0.28 p12 = 0.12

p21 = 0.33 p22 = 0.27

Expectation µ, variance σ2 and standard devi-
ation σ for X and Y are:

µX =
2∑

k=1

xk(pk1 + pk2)

= x1(p11 + p12) + x2(p21 + p22)

= 1 · 0.4 + 0 · 0.6 = 0.4

µY =

2∑
k=1

yk(p1k + p2k)

= y1(p11 + p21) + y2(p12 + p22)

= 1 · 0.61 + 0 · 0.39 = 0.61

σ2
X =

2∑
k=1

(xk − µX)2(pk1 + pk2)

= (1− 0.4)2 · 0.4 + (0− 0.4)2 · 0.6 = 0.24

σ2
Y =

2∑
k=1

(yk − µY )2(p1k + p2k)

= (1− 0.61)2 · 0.61 + (0− 0.61)2 · 0.39

= 0.2379

σX =
√
σ2
X =

√
0.24 ≈ 0.490

σY =
√
σ2
Y =

√
0.2379 ≈ 0.488

Covariance and correlation are given by:

Cov(X,Y ) = E(XY )− E(X)E(Y )

= x1y1p11 + x1y2p12 + x2y1p21

+ x2y2p22 − µXµY
= 1·1·0.28 + 1·0·0.12 + 0·1·0.33

+ 0·0·0.27− 0.61·0.4
= 0.28− 0.244 = 0.036

Corr(X,Y ) =
Cov(X,Y )√

σ2
Xσ

2
Y

=
0.036√

0.2379 · 0.24

≈ 0.151

For the sum of X and Y we have:

µX+Y = µX + µY = 0.4 + 0.61 = 1.01

σ2
X+Y = σ2

X + σ2
Y + 2 Cov(X,Y )

= 0.24 + 0.2379 + 2·0.036 = 0.5499

σX+Y =
√
σ2
X+Y =

√
0.5499 ≈ 0.742

Since Corr(X,Y ) 6= 0 the two random variables
X and Y are statistically dependent. C

Definition 10.13 (independent and identically
distributed). We call two random variables X
and Y independent and identically distributed ,
i.i.d., if their covariance is zero and they have
the same probability density function fX(x) and
fY (x) or the same probability mass function
pX(x) and pY (x), i.e.

Cov(X,Y ) = 0

fX(x) = fY (x) or pX(x) = pY (x)

C

10.2. Discrete random
distributions

10.2.1. Binomial distribution

Suppose we perform n i.i.d. experiments each of
them having the outcome success with a proba-

August 15, 2022 75



bility p. Let us assume the random variable X
gives the number of successes for n trials. I.e.
we combine n experiments to one random vari-
able X with sample space Ω = {0, 1, 2, . . . , n}.

Theorem 10.14 (Binomial distribution). Let
Xb be a random variable representing the num-
ber of successes of n i.i.d. experiments. Each
experiment has a success probability p. Then
the probability P(Xb=k) for exactly k successes
is given by

P(Xb=k) =

(
n

k

)
pk(1− p)n−k

where

(
n

k

)
=

n!

k!(n− k)!

We call this a binomial random variable with bi-
nomial distribution. Expectation and variance
are given by

µb = E(Xb) = np

σb
2 = Var(Xb) = np(1− p)

C

Example 10.10. The following graphs show
the binomial distribution for n = 10 experi-
ments and different single experiment probabil-
ities p:

k0 2 4 6 8 10

P(X=k)

0

0.2

0.4

0.6
p=0.05

p=0.1

p=0.2
p=0.5 p=0.8

k0 2 4 6 8 10

F (x)

0.5

1 p=0.1

p=0.2

p=0.5 p=0.8

C

Example 10.11. Let X be the number of ones
thrown by two unbiased six-sided dice with the
numbers 1−6. We have p = 1

6 as the probability
of throwing a one with one die. For the events
A0, A1 and A2 of throwing zero, one or two ones
the probabilities are:

P(A0) =

(
2

0

)
(1

6)0(1− 1
6)2 = 25

36 ≈ 69.4%

P(A1) =

(
2

1

)
(1

6)1(1− 1
6)1 = 10

36 ≈ 27.8%

P(A2) =

(
2

2

)
(1

6)2(1− 1
6)0 = 1

36 ≈ 2.8%

C

10.2.2. Poisson distribution

As for a binomial distribution we perform n
identical experiments with the number of suc-
cesses being a random variable X.

We now increase the number of experiments
n and decrease the probability of success of a
single experiment p in a way that the product
λ = np remains constant. For the limit n→∞
the random variable X takes on the Poisson
distribution:

Definition 10.15 (Poisson distribution). A
random variable XP with sample space Ω =
{0, 1, 2, . . .}, λ ∈ R>0 and probability mass
function

p(k) = P(XP =k) = e−λ
λk

k!
, k = 0, 1, 2, . . .

is said to be a Poisson random variable with
Poisson distribution. C

Theorem 10.16 (Poisson distribution). With
the conditions of the previous definition expec-
tation and variance are given by:

E(XP ) = Var(XP ) = λ

C

Example 10.12. The following graphs show
Poisson distributions for different λ:
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k0 2 4 6 8 10

P(X=k)

0.0

0.2

0.4

0.6
λ=0.5

λ=1

λ=2
λ=5

k0 2 4 6 8 10

F (x)

0.5

1 λ=1

λ=2

λ=5 λ=8

C

Example 10.13. A shop expects Saturday af-
ternoon on average four customers per minute.
The random variable X as the number of cus-
tomers per minute then has a Poisson distribu-
tion. With λ = 4 we get the following probabil-
ities:

k P(X=k)

0 1.83%
1 7.33%
2 14.65%
3 19.54%
4 19.54%
5 15.63%
6 10.42%

k P(X=k)

7 5.95%
8 2.98%
9 1.32%

10 0.53%
11 0.19%
12 0.06%
13 0.02%

k0 2 4 6 8 10 12

P(X=k)

0%

10%

20%

C

10.3. Continuous random
distributions

10.3.1. Uniform distribution

Definition 10.17 (Uniform distribution). For
a, b ∈ R and a < b the continuous random vari-
able Xu with probability density function

f(x) =

{
1
b−a for a ≤ x < b

0 otherwise

is said to be a uniform random variable with
uniform distribution. C

Theorem 10.18 (Uniform distribution). For
the definition above expectation and variance
are given by

µu = E(Xu) =
a+ b

2

σu
2 = Var(Xu) =

(b− a)2

12

C

x

f(x)

a b

1
b−a

x

F (x)

a b

1

Example 10.14. Pseudo random number gen-
erator

Many computer languages provide a so called
pseudo random number generator , PRNG to
generate some sort of random numbers. A
PRNG provides numbers on a given interval
with uniform distribution.

Although talking about random numbers, a
PRNG is deterministic, i.e. starting the PRNG
a second time with the same parameters will
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result in exactly the same numbers. Neverthe-
less, the generated numbers behave like random
numbers in terms of probability, expectation
and variance.

A simple implementation of a PRNG is a lin-
ear congruential generator : The next number
xk+1 is evaluated from the previous number xk
by

xk+1 = (a xk + c) mod m

with a, c,m ∈ N. The parameters a, c and m
must be chosen thoroughly to gain an accept-
able quality.

In order to gain unpredictable random num-
bers a useful technique is to initialize the ran-
dom number generator by the actual time. I.e.
the first random number x0 is set to a desired
value derived from the computer time.

Strictly speaking a PRNG represents a dis-
crete random variable X with discrete sample
space Ω = {0, 1, 2, . . . , xmax}. However, for
many applications the PRNG is sufficient as in-
put for a continuous random variable.

E.g. dividing the pseudo random variable X
by the maximum value xmax provides a random
variable with values from zero to one with a
high density. C

10.3.2. Normal distribution

Definition 10.19 (Normal distribution). For
µ, σ ∈ R and σ > 0 a random variable Xn with
probability density function

f(x) =
1√
2π σ

exp

(
−(x− µ)2

2σ2

)
is said to be a normal random variable with
normal distribution. C

Theorem 10.20 (Normal distribution). For
the definition above expectation and variance
are given by

E(Xn) = µ Var(Xn) = σ2

C

The normal probability density function is a
bell shaped function symmetric around x = µ:

xµ−2σ µ−σ µ µ+σ µ+2σ

f(x)

1√
2π σ

If Xn is a normal random variable with expec-
tation µ and standard deviation σ, then aXn+b,
a, b ∈ R, a > 0 again is a normal random vari-
able.

With a = 1
σ and b = −µ

σ we get the standard
normal random variable Xsn:

Xsn =
Xn

σ
− µ

σ
=
Xn − µ
σ

Definition 10.21 (Standard normal distribu-
tion). We define a random variable Xsn with
probability density function

fsn(x) = φ(x) =
1√
2π
e−x

2/2

as a standard normal random variable with
standard normal distribution. C

x−2 −1 0 1 2

φ(x)

1√
2π

The cumulative distribution function Φ(x) =
Fsn(x) is the integral of the probability density
function φ(x) from −∞ to x:

Φ(x) =

∫ x

−∞
φ(x′) dx′ =

1√
2π

∫ x

−∞
e−x

′2/2 dx′

78 August 15, 2022



x−2 −1 0 1 2

Φ(x)

1
2

1

For the random variable with standard nor-
mal distribution we have:

µsn = 0 σ2
sn = σsn = 1

Values for the cumulative distribution func-
tion may either be evaluated numerically or de-
rived from tables as the one below. Since φ(x)
is symmetric around x = 0 we have Φ(−x) =
1−Φ(x) and, hence, we limit the table to argu-
ments x ≥ 0.

x Φ(x)

0.0 0.50000
0.1 0.53983
0.2 0.57926
0.3 0.61791
0.4 0.65542
0.5 0.69146
0.6 0.72575
0.7 0.75804
0.8 0.78814
0.9 0.81594
1.0 0.84134
1.1 0.86433

x Φ(x)

1.2 0.88493
1.3 0.90320
1.4 0.91924
1.5 0.93319
1.6 0.94520
1.7 0.95543
1.8 0.96407
1.9 0.97128
2.0 0.97725
2.1 0.98214
2.2 0.98610
2.3 0.98928

x Φ(x)

2.4 0.99180
2.5 0.99379
2.6 0.99534
2.7 0.99653
2.8 0.99744
2.9 0.99813
3.0 0.99865
3.2 0.99931
3.4 0.99966
3.6 0.99984
3.8 0.99993
4.0 0.99997

The cumulative distribution function Fn(x)
of a normal distributed random variable Xn

with expectation µ and standard deviation σ
may be expressed by the cumulative distribu-
tion function Φ(x) of the standard normal ran-
dom variable Xsn:

Fn(x) = P(Xn ≤ x) = P (Xn − µ ≤ x− µ)

= P

(
Xn − µ
σ

≤ x− µ
σ

)
= P

(
Xsn ≤

x− µ
σ

)
= Φ

(
x− µ
σ

)
Typical questions are: What is the probabil-

ity a for a standard normal random variableXsn

to be larger than xa?

a = P(Xsn > xa) = 1− Φ(xa)

Conversely we may ask: What is the value xa
for a standard normal random variable Xsn to
be larger than with a probability a? E.g. x0.1 =
1.282 is the value for a standard normal random
variable to be larger than with a probability of
10%.

x

φ(x)

xa

a

Example 10.15. What is the probability of a
normal random variable with expectation 1 and
standard deviation 0.5 to be larger than 2?

With Xn as the normal random variable,
µ = 1 as the expectation, σ = 0.5 as the stan-
dard deviation, xa = 2 as the limit and a as the
probability of Xn being greater than xa we get:

a = P(Xn > xa) = 1− P(Xn ≤ xa)
= 1− P(Xn − µ ≤ xa − µ)

= 1− P

(
Xn − µ
σ

≤ xa − µ
σ

)
= 1− P

(
Xsn ≤

xa − µ
σ

)
= 1− Φ

(
xa − µ
σ

)
= 1− Φ

(
2− 1

0.5

)
= 1− Φ(2) = 1− 0.977 = 2.3%

x−1 0 1 2 3

fn(x)

2.3%

2√
2π

C

The probabilities of a normal random variable
to be within the limits of ±σ, ±2σ etc. are also
of interest. The following graph illustrates some
of these probabilities.
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x−3 −2 −1 0 1 2 3

φ(x)

2.1% 13.6% 34.1% 34.1% 13.6% 2.1%

68.3%

95.4%

99.7%

E.g. the probabilitiy of Xsn to be within ±σ,
i.e. ±1 is:

P(|Xsn| < 1) = P(−1 < Xsn < 1)

= P(Xsn < 1)− P(Xsn ≤ −1)

= P(Xsn ≤ 1)− P(Xsn ≤ −1)

= Φ(1)− Φ(−1)

= Φ(1)− 1 + Φ(1)

= 2 Φ(1)− 1

= 2 · 0.84134− 1

= 0.68264 =̂ 68.3%

Why do we focus so much on normal random
variables? If we deal with the sum of a large
number of i.i.d. random variables we approach
the normal distribution:

Theorem 10.22 (Central limit theorem). Let
X1, X2, . . . be a sequence of i.i.d. random vari-
ables with expectation µ and standard devia-
tion σ. Then

lim
n→∞

P

(
X1+X2+. . .+Xn − nµ

σ
√
n

≤ x
)

= Φ(x)

C

Example 10.16. The following diagram shows
the probability density functions of a sum of
i.i.d. uniform distributed random variables each
on the interval [0, 1). With increasing number
the expectation, variance and standard devia-
tion increase.

x0 1 2 3 4

f(x)

1

n=1
n=2

n=3
n=4

n=5
n=6

For a single random variable we get:

µ1 =
1

2
σ2

1 =
1

12
σ1 =

1√
12

For the sum of n random variables we get:

µn = nµ1 =
n

2

σ2
n = nσ2

1 =
n

12

σn =
√
nσ1 =

√
n

12

If we subtract from the sum of n random vari-
ables the expectation µn and divide by the stan-
dard deviation σn we get the graphs illustrated
in the following diagram:

x−2 −1 0 1 2

f(x)

n=1

n=2

n=3

n=4φ(x)

C

10.3.3. Exponential distribution

Definition 10.23 (Exponential distribution).
For λ ∈ R, λ > 0 a random variable Xe with
probability density function

f(x) =

{
λ e−λx for x ≥ 0
0 otherwise

is said to be an exponential random variable
with exponential distribution. C

For x ≥ 0 the cumulative distribution func-
tion becomes:

F (x) =

∫ x

−∞
f(x′) dx′ = λ

∫ x

0
e−λx

′
dx′

= λ
[

1
−λe

−λx′
]x

0
= 1− e−λx

I.e. F (x) =

{
0 for x < 0
1− e−λx for x ≥ 0
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x1
λ

2
λ

0

f(x)

λ

x1
λ

2
λ

0

F (x)

1

Theorem 10.24 (Exponential distribution). A
random variable Xe with exponential distribu-
tion has the expectation and variance:

E(Xe) =
1

λ
Var(Xe) =

1

λ2

C

Example 10.17. When shooting randomly
into a forest the bullet will hit earlier or later a
tree. The free path of the bullet d may be looked
at as a random variable. On average the bullet
will fly a distance dmean which is the mean free
path. This mean free path dmean depends on the
thickness of the trees and the number of trees
per area.

The random variable for the free path has ex-
ponential distribution with λ = 1

dmean
. I.e. Most

bullets will be found in the trees close to the
shooter. The larger the distance to the shooter
the less bullets will be found.

x
dmean 2dmean0

f(x)

1
dmean

C

10.4. Problems

Problem 10.1: A random variable has a
constant probability over its sample space Ω =
[−1, 0). Plot the cumulative distribution func-
tion and the probability density function.

Problem 10.2: An unbiased six-sided die has
the numbers 1, 1, 2, 2, 3 and 4 on its six faces.
Plot the cumulative distribution function.

Problem 10.3: A continuous random variable
X has the probability density function f(x):

f(x) =


0 for x < −1
1
2 for − 1 ≤ x < 1
0 for 1 ≤ x

Plot the cumulative distribution function and
the probability density function. Evaluate ex-
pectation, variance and standard deviation.

Problem 10.4: A continuous random variable
X has the probability density function f(x):

f(x) =

{
0 for x < 0
e−x for x ≥ 0

Evaluate expectation, variance and standard
deviation.

Problem 10.5: For a random variable X with
sample space Ω = [0, 1) and constant probabil-
ity density function f(x) over the whole sample
space, i.e.

f(x) =


0 for x < 0
1 for 0 ≤ x < 1
0 for 1 ≤ x

plot the cumulative distribution function and
the probability density function.

Evaluate expectation, variance and standard
deviation. Hint: Make use of the results from
the previous problem.

Problem 10.6: A continuous random variable
X has the probability density function f(x):

f :


R→ R
x 7→ 0 for x < 0
x 7→ a e−ax for x ≥ 0

Plot the cumulative distribution function and
the probability density function.
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Evaluate expectation, variance and standard
deviation. Find these values a) by applying def-
initions 10.5 and 10.6 and b) by scaling the re-
sults from previous problems.

Problem 10.7: For a six-sided unbiased die
with the numbers one to six we define two ran-
dom variables X and Y :
X returns one for even numbers and zero oth-

erwise. Y returns one for the events of throwing
a 4, 5 or 6 and zero otherwise.

1. Evaluate expectation µ, variance σ2 and
standard deviation σ for X, Y .

2. Evaluate covariance and correlation for X
and Y .

3. For X+Y evaluate expectation µ, variance
σ2 and standard deviation σ.

4. Are X and Y independent?

Problem 10.8: For three unbiased standard
dice we define the random variable X as the
number of ones and/or sixes thrown. I.e. the
sample space of X is Ω = {0, 1, 2, 3}.

1. Evaluate the probability of X for all ele-
ments of Ω.

2. Evaluate expectation µ, variance σ2 and
standard deviation σ of X.

Problem 10.9: You measure with a Geiger-
Mueller counter on average three quanta per
second. a) What are the probabilities to mea-
sure 0, 1, 2, . . . , 7 quanta per second? b) What
is the expectation, variance and standard devi-
ation for the number of measured quanta per
second?

Problem 10.10: For a uniform random vari-
ableXu on the interval [a, b) prove the equations
for expectation µu and variance σu

2:

µu = E(Xu) =
a+ b

2

σu
2 = Var(Xu) =

(b− a)2

12

Problem 10.11: For a normal distributed
random variable Xn with expectation µ = 3 and
standard deviation σ = 1, what is the probabil-
ity for Xn being

1. greater than four?

2. less than one?

3. between two and three?

4. outside ±2σ around µ?

Problem 10.12: You have the sum of 100
i.i.d. random variables each with expectation
µ1 and standard variation σ1. Approximate the
sum by a normal random variable Xn defined
by its probability density function fn(x).

Problem 10.13: A company produces a large
number of cylinders with specified diameter of
60 ± 0.02 mm. The actual diameter shows a
mean value of 60.01 mm with a standard devia-
tion of 0.01 mm. Assuming normal distribution,
what is the failure rate?

Problem 10.14: A company produces resis-
tors that are specified with 1% tolerance. Any
resistor with a higher deviation is treated as fail-
ure.

Assuming a normal distribution for the actual
resistance, what standard deviation σ is accept-
able to achieve a failure rate below 1%?

Problem 10.15: For an exponential dis-
tributed random variable X with expectation
µ = 3, what is the probability for X being

1. greater than four?

2. less than one?

3. between two and three?

4. outside ±σ/2 around µ?

Problem 10.16: The half-life of the radio-
active plutonium nuclide Pu-239 is 24 110 years.
Evaluate expectation, variance and standard
deviation of a random variable that describes
the radioactivity.
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A. Solutions

A.1. Integral calculus

Solution 1.1:

Rf (4) = π
4 (1 +

√
2)

Uf (4) = π
4 (2 +

√
2)

Lf (4) = π
4

√
2

Solution 1.2:

Rf (4) = 12 Uf (4) = 20 Lf (4) = 12

Solution 1.3:

Rf (n) = 16(n−1)
n

Uf (n) = 16(n+1)
n

Lf (n) = Rf (n) = 16(n−1)
n

n 1 10 100 1000 ∞
Rf (n) 0 14.4 15.84 15.984 16
Uf (n) 32 17.6 16.16 16.016 16
Lf (n) 0 14.4 15.84 15.984 16

Solution 1.4:

1. 8 5. 14
3

2. 10 6. 2
3b

3 − 1
2b

2

3. 15
2 7. 2(b− a) + 1

3b
3 − 1

3a
3

4. 3
2 8. 2(a− b) + 1

3a
3 − 1

3b
3

Solution 1.5:

1. 13
2 5. 4

3

2. − 13
2 6. − 1

3. 13
2 7. 4b2−a2

2

4. 1 8. b3+a3

3

Solution 1.6:

1. x3 − x0
3 5. sin(2πx)− sin(2πx0)

2. sin(x)− sin(x0) 6. e2jπf x − e2jπf x0

3. cos(x0)− cos(x) 7. sin
(
x2
)
− sin

(
x0

2
)

4. ex − ex0 8. cos
(
x0

3
)
− cos

(
x3
)

Solution 1.7: For any constant C:

f1(x) = x+ C f5(x) = − cos(x) + C

f2(x) = x2 + C f6(x) = sin(x) + C

f3(x) = 1
3x

3 + C f7(x) = ex + C

f4(x) = 1
4x

4 + C f8(x) = 1
3x

3 − 1
2x

2 + x+ C

Solution 1.8:

1. C 5. 1
ln(5)5x + C

2. ax+ C 6. 1
ln(π)π

x + C

3. 1
3x

3 − x+ C 7. 2 sinh(x) + C

4. 3ex + C 8. 1
2 cosh(x) + C

Solution 1.9:

1. 5
2 5. 4

2. 4 6. 1
2π sin(2πx) + C

3. 1
3x

3 + C 7. − jejx + C

4. e4 + e1 − 2 ≈ 55.3 8. 1
3 tan(3x) + C

Solution 1.10:

1. 2
3

√
x3 + C 5. 3 3

√
x+ C

2. 2
5

√
x5 + C 6. x(ln(x)− 1) + C

3. 2
√
x+ C 7. 1

ln(10)x(ln(x)− 1) + C

4. 3
4

3
√
x4 + C 8. 1

ln(2)x(ln(x)− 1) + C

A.2. Application of integrals

Solution 2.1: m = 1.2 kg
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Solution 2.2: A = 32
√

2 cm2 ≈ 45.3 cm2

Solution 2.3: A =
nd2

8
sin

(
2π

n

)
Solution 2.4: Ansatz:

VL(n) =

n−1∑
k=0

h
nπ
(
kr
n

)2
VU (n) =

n∑
k=1

h
nπ
(
kr
n

)2

Solution 2.5: Possible ansatz:

V =

∫ h

0
π
(
r1 − (r1 − r2)xh

)2
dx

· · ·
= πh

3 (r1
2 + r1r2 + r2

2)

Solution 2.6:

1. VL(n) =
n−1∑
k=0

4π

(
kr

n

)2 r

n

2. VU (n) =
n∑
k=1

4π

(
kr

n

)2 r

n

3. V = lim
n→∞

VL(n) = lim
n→∞

VU (n) =
4

3
πr3

4. V =

∫ r

0
4πx2 dx =

4

3
πr3

Solution 2.7:

u = ũ = û

Solution 2.8: Hint: due to symmetry it is
sufficient to concentrate on the first quarter of
a period only.

u =
û

2
ũ =

û√
3

A.3. Integration techniques

Solution 3.1:

1. 1 5.
1

k − 1

2. 2 6.
2k+1

k + 1

3.
3
3
√

2
7.

4

3

4. 2 8. 0

Solution 3.2:

1. sin(x2) + C 4. sin(sinx) + C

2. esinϕ + C 5. 1
2 ln(x2 + 1) + C

3. cosh(x3) + C 6. 1
ae
ax+b + C

Solution 3.3:

1. sin(3x+ 1) + C 4.

√
8

3
2. cos(1− x) + C 5. 1

3.
3

4

(
3
√

81− 1
)
≈ 2.495 6. e2πjft + C

Solution 3.4:

1.
1

2
ln |x2 + 1|+ C 4. 2 ln

∣∣∣√x3 + x2
∣∣∣+ C

2. ln | cosh(x)|+ C 5. − 1

2
ln |x4 − x2|+ C

3. ln(2) ≈ 0.6931 6.
ln(2)

2
≈ 0.3466

Solution 3.5:

1. sin(3) ≈ 0.1411 4. C − 1

3
cos(x3)

2.
2e− 2

3
≈ 1.146 5. 0

3. esin(x) + C 6. 2 ln | sin(x)|+ C

Solution 3.6:

1. (x− 1)ex + C

2. C − (x3 + 3x2 + 6x+ 6)e−x
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3. (x2 − 2) sin(x) + 2x cos(x) + C

4. x cosh(x)− sinh(x) + C

5.
(
x− 1

π

)
eπx + C

6. 1
2(x− sin(x) cos(x)) + C

Solution 3.7:

1. 1
4 3. 4 5. 4

2. 4 4. 8
3 6. 1

Solution 3.8:

1. 1
2 {ln |x− 1| − ln |x+ 1|}+ C

2.
1

x+ 2
+ 2 ln |x+ 2|+ C

3. 1
2 ln |x|+ 1

4 ln |x2 + 2x+ 2|
− 3

2 arctan(x+ 1) + C

4. 1
5 ln |x− 1|+ ln |x+ 1| − 7

5 arctan(x+ 1)

− 1
10 ln |x2 + 2x+ 2|+ C

A.4. Functions with multiple
arguments and values

Solution 4.1:

x

f

0
0

1
2

1
2

1

1
y = 0

y
=
1

y
=
2

y
=
3

x

g

0
0

1
2

1
2

1

1
y = 0

y
=
1

y
=
2

y
=
3

xπ 2π

h

−1

0

1 y = 0
y = 1

y = 2
y = 3

xπ 2π

i

−1

0

1

y = 0

y = 1

y = 2

y = 3

Solution 4.2:

x

y

−2

−2

−1

−1

1

1

2

2
f = 0

f = 0.6
f = 1.2
f = 1.8
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x

y

−2

−2

−1

−1

1

1

2

2

g = 0.5
g = 1.0

g = 1.5
g = 2

x

y

−1

−1

1

1

h
=
−0
.5

h
=

0

h
=

0.5

h
=

1

h
=

1.5

Solution 4.3:

f(x, y)

x

y

−2

−2

−1

−1

1

1

2

2

g(x, y)

x

y

−2

−2

−1

−1

1

1

2

2

h(x, y)

x

y

−2

−2

−1

−1

1

1

2

2

Solution 4.4: All the functions are continuous
in their domain.

Solution 4.5:

1. ∂f
∂x = 1 ∂f

∂y = 2y ∂f
∂z = 3z2

2. ∂f
∂x = y cos(xy)
∂f
∂y = x cos(xy)

∂f
∂z = −2z sin(z2)

3. ∂f
∂x =

ex+y

z2 + z + 1

∂f
∂y =

ex+y

z2 + z + 1

∂f
∂z = − (2z + 1)ex+y

(z2 + z + 1)2

4. ∂f
∂a =

b

cd
∂f
∂b =

a

cd

∂f
∂c = − ab

c2d

∂f
∂d = − ab

cd2

5. ∂f
∂u =

1

u
∂f
∂v = −wevw

∂f
∂w =

1

w
− vevw

6. ∂f
∂α = −2π

γ2
sin(2πα)

∂f
∂β =

2πj

γ2
cos(2πβ)

∂f
∂β = −2

cos(2πα) + j sin(2πβ)

γ3
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Solution 4.6:

1. ∂f
∂x =

∑
k

kxk−1 ∂f
∂y =

∑
k

kyk−1

2. ∂f
∂x =

∑
k

kxk−1yk ∂f
∂y =

∑
k

kxkyk−1

3. ∂f
∂x = −y

∑
k

ke−kxy

∂f
∂y = −x

∑
k

ke−kxy

4. ∂f
∂a0

= 2
∑
k

(a1xk + a0 − yk)

∂f
∂a1

= 2
∑
k

xk(a1xk + a0 − yk)

Solution 4.7:

1. grad(f) =

(
1
1

)
= ex + ey

2. grad(f) =

 x√
x2+y2
y√
x2+y2

 =
xex + yey√
x2 + y2

3. grad(f) =

 2xey + 3x2 cos(z)
x2ey

−x3 sin(z)



Solution 4.8:

1. grad(f) =
x+ y

|x+ y|
(ex + ey) for x 6= −y

x

y

−2

−2

−1

−1

1

1

2

2

2. grad(f) =
xex + yey√
x2 + y2

for x2 + y2 6= 0

x

y

−2

−2

−1

−1

1

1

2

2

3. grad(f) = cos(x)ex + ey

x
0 π 2π

y

0

1

2

3

4

5

Solution 4.9:

1.

(
2y2 4xy
4xy 2x2

)
2.

(
0 1
1 0

)
3.

(
− sin(x) 0

0 − cos(y)

)

4.

 2ey+z2ex 2xey 2zex

2xey x2ey+2 sin(z) 2y cos(z)
2zex 2y cos(z) 2ex–y2 sin(z)



Solution 4.10:

1. minimum at f(1
2 ,

1
2) = 0

2. maximum at f(0, 1) = 2

3. maximum at f(1, 2) = 5

Solution 4.11:

1.

(
2x 2y
y x

)

2.

 cos(x) − sin(y)
2xy2 2x2y
yexy xexy


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3.

 1 2y 3z2

ey sin(z) xey sin(z) xey cos(z)
2xey+z x2ey+z x2ey+z



A.5. Differential equations

Solution 5.1: Equations 1, 3, 4 and 5 are dif-
ferential equations. (In expression 6 the deriva-
tives cancel out.)

Solution 5.2:

or
d

er

or
d

in
ar

y

ex
p

li
ci

t

li
n

ea
r

h
om

og
en

eo
u

s

1. 2 yes no yes no

2. 1 no n.a. yes yes

3. 2 no n.a. yes no

4. 2 yes yes no no

5. n yes yes yes yes

6. 1 yes no no no
n.a. = not applicable

Solution 5.3:

Nr. general particular

1. a), d) c)

2. d) a)

3. c) a)

Solution 5.4:

1. y′ = y cot(x)

2. y′ = y tanh(x)

3. y′′y = (y′)2

4. xy′ = 2y

Solution 5.5: xy′ = y

Solution 5.6: xy′ = 2y

Solution 5.7: y′y + x = 0

A.6. First order differential
equations

Solution 6.1:

1.

x

y

−2

−2

−1

−1

1

1

2

2

2.

x

y

−2

−2

−1

−1

1

1

2

2

3.

x

y

−2

−2

−1

−1

1

1

2

2

Solution 6.2:

1. y =
√

2x+ C 4. y = ln(x+ C)

2. y =
√
x2 + C 5. y =

√
cos(2x) + C

3. y = Cx 6. y =
1

2x+ C

88 August 15, 2022



Solution 6.3:

1. y = c ex
3/3−x 4. y = c ecos(x)

2. y = c x e−x
2

5. y = c esinh(x)

3. y = c e−2
√
x3 6. y = c

√
|x|

Solution 6.4:

1. y = cx− 1

2. y =
ex + c

x

3. y =
sin(x) + c

x2
− cos(x)

x

Solution 6.5:

1. y =
c

x
+ 1

2. y =
sin(x) + 2 cos(x)

5
+ c e−2x

3. y = c ex − 1 + j

2
ejx

Solution 6.6:

1. y = c e3x

2. y = c e−3x

3. y = c e−x
4/4

4. y = c e−2/x

5. y = c ekx

6. y = c exp

(
kxn+1

n+ 1

)

Solution 6.7:

1. y = c ex + x+ 1

2. y = c e−2x + 1
4(2x2 − 2x+ 1)

3. y = c e1/x + 1

4. y = c x− 1

5. y = c e−x + x− 1

6. y = c ex + 2x+ 2

A.7. Higher order linear
differential equations

Solution 7.1:

1. y = C1 e
−2x + C2 e

x

2. y = C1 e
−x + C2 e

x

3. y = (C1x+ C2) ex

4. y = (C1 cos(x) + C2 sin(x)) e−x

5. y = C1 e
−2x + C2 e

2x

6. y = (C1x+ C2) ex/2

7. y = (C1 cos(x) + C2 sin(x)) ex/2

8. y = (C1 cos(3x) + C2 sin(3x)) ex

Solution 7.2:

1. y = C1 e
−x + C2 e

−2x + C3 e
−3x

2. y = C1 e
−2x + C2 e

−x + C3 e
x + C4 e

2x

3. y = C1 e
x + C2 cos(x) + C3 sin(x)

4. y = (C1 + C2 cos(x) + C3 sin(x)) e−x

5. y = (C1x+ C2) e−x + (C3x+ C4) ex

6. y = (C1x+ C2) ex

+ (C3 cos(2x) + C4 sin(2x)) e−x

Solution 7.3:

1. y = C1 e
−2x + C2 e

−x + x− 1

2. y = (C1x+ C2) e−x + x

3. y = (C1 cos(x) + C2 sin(x)) e−x − x+ 2

4. y = (C1x
2 + C2x+ C3) e−x − x2 + 6x− 12

5. y = (C1x+ C2) ex

+ (C3 cos(3x) + C4 sin(3x)) e−x + 1
2

6. y = C1 e
x/2 + C2 e

−x/2 + x3 + 24x

Solution 7.4: Solve the following DEs:

1. y = C1 e
−2x + C2 e

x + 1
5 e

3x

2. y = C1 cos(2x) + C2 sin(2x) + e−2x

3. y = (C1x+ C2) e2x + 1
3 e
−x

4. y = C1 e
x + C2 cos(x) + C3 sin(x)− 1

5 e
−2x

5. y = C1 e
−x/2 + C2 e

x + e−2x
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Solution 7.5: Solve the following DEs:

1. y = C1 e
2x + C2 e

−2x − sin(x)

2. y = (C1x+ C2) ex + 2 sin(x)

3. y = C1 cos(2x) + C2 sin(2x)− cos(3x)

4. y = (C1 cos(2x) + C2 sin(2x)) ex + 1
2 cos(x)

5. y = C e−x + 2
5 cos(2x)− 1

5 sin(2x)

6. y = (C1x
2 + C2x+ C3) e−x + sin(x)

Solution 7.6: Solve the following DEs:

1. y = C1 e
−3x + C2 e

x − 1
4 e
−x + x+ 2

3

2. y = C1 cos(3x)+C2 sin(3x)+ 1
3 e

3x+sin(x)

3. y = C1 e
−2x + C2 e

2x + 1
5 cos(x) + x2 + 1

2

4. y = (C1x+ C2) e−x + C3 e
−2x + x2 + ex

Solution 7.7: Solve the following DEs:

1. y = (C1 + x) e−2x

2. y = C1 cos(2x) + (C2 − x) sin(2x)

3. y = (C1 + 3
5x) e−3x + C2 e

2x

4. y = (C1x+ C2 + x2) e−x + C3 e
−2x

A.8. Combinatorics

Solution 8.1: 40 320

Solution 8.2: 3 628 800

Solution 8.3: 90

Solution 8.4: 70

Solution 8.5: 56

Solution 8.6: 126

Solution 8.7: 252

Solution 8.8: 7

Solution 8.9: 10 068 347 520

Solution 8.10: 336

Solution 8.11: nk

Solution 8.12: 20 736

A.9. Probability theory

Solution 9.1:

1. {1, 2, 3, A,B,C} 4. {A,C}
2. {} 5. {1, 2, 3}
3. {2, 3, A,B,C} 6. {1, 3, C}

Solution 9.2: If two events have no common
elements (i.e. their intersection is empty) they
are said to be mutually exclusive:

Solution 9.3:

1. 0.8 4. 0.2

2. 0.5 5. 0.5

3. 0.0 6. 0.3

Ω

A B

0.2 0.3

0.5

Solution 9.4:

1. 0.6 4. 0.1

2. 0.1 5. 0.8

3. 0.3 6. 0.3

Ω

A B

0.1 0.2 0.3

0.4

Solution 9.5:

1. 0.4 2. 2
3

Solution 9.6:

1. 0 2. 0
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Solution 9.7: With Ak, k = 1, 2, 3 as the
event of an product to be produced by machine
1 to 3, respectively, and B as the event of a
failure:

a) P (B) = 2.9 %

b) P (A1|B) = 34.5 %
P (A2|B) = 31.0 %
P (A3|B) = 34.5 %

Solution 9.8: With Ak, k = 1, 2, 3, 4 as the
event of age group 1 to 4, respectively, and B
as the event of road fatality:
a)

P (A1) = 13.4 % P (A3) = 54.8 %

P (A2) = 11.2 % P (A4) = 20.6 %

b) (in parts per million, ppm)

P (B|A1) = 9.51 P (B|A3) = 41.1

P (B|A2) = 86.6 P (B|A4) = 54.0

c)
P (B) = 44.6 ppm

d)

P (A1|B) = 2.9 % P (A3|B) = 50.5 %

P (A2|B) = 21.7 % P (A4|B) = 25.0 %

Solution 9.9: The two events A and B are
independent.

A.10. Stochastic

Solution 10.1:

x−1 0

F (x)

1

x−1 0

f(x)

1

Solution 10.2:

0 x1 2 3 4

F (x)

1
3

2
3

5
6

1

Solution 10.3:

x−1 0 1

F (x)

1

x−1 0 1

f(x)

1
2

µ = 0 σ2 = 1
3 ≈ 0.333 σ = 1√

3
≈ 0.577

Solution 10.4:

µ = σ2 = σ = 1

Solution 10.5:

x0 1

F (x)

1

August 15, 2022 91



x0 1

f(x)

1

µ = 1
2 = 0.5

σ2 = 1
12 ≈ 0.083

σ = 1
2
√

3
≈ 0.289

Solution 10.6:

x1
a

2
a

0

F (x)

1

x1
a

2
a

0

f(x)

a

µ = 1
a σ2 = 1

a2
σ = 1

a

Solution 10.7:

1. µX = 1
2 , σX

2 = 1
4 , σX = 1

2
µY = 1

2 , σY
2 = 1

4 , σY = 1
2

2. Cov(X,Y ) = 1
12 , Corr(X,Y ) = 1

3 .

3. µ = 1, σ2 = 2
3 , σ =

√
2
3

4. No

Solution 10.8:

1. P (X=0) = 8
27 P (X=1) = 4

9

P (X=2) = 2
9 P (X=3) = 1

27

2. µ = 1 σ2 = 2
3 σ =

√
2
3

Solution 10.9:
a) k P (X=k)

0 5.0 %
1 14.9 %
2 22.4 %
3 22.4 %

k P (X=k)

4 16.8 %
5 10.1 %
6 5.0 %
7 2.2 %

b) µ = 3 σ2 = 3 σ =
√

3

Solution 10.10: For results, see problem.

Solution 10.11:

1. P (Xn>4) = 15.9 %

2. P (Xn<1) = 2.3 %

3. P (2<Xn<3) = 34.1 %

4. P (|Xn−µ|>2) = 4.6 %

Solution 10.12:

fn(x) =
1√
2π σ

exp

(
−(x− µ)2

2σ2

)
with µ = 100µ1 and σ = 10σ1

Solution 10.13: failure rate: 16.0 %

Solution 10.14: σ = 0.004 ·R

Solution 10.15:
1. 26.4 %, 2. 28.3 %, 3. 14.6 %, 4. 61.7 %

Solution 10.16:
µ = σ = 34 783 a σ2 = 1.2099×109 a2
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Index

absolutes
integration of, 25

absorbed power, 30
antiderivative, 10
area of a trapezium, 13
area of discs, 14
area of polygons, 14
area of triangles, 14
arithmetic mean, 17
axioms of probability, 67

binomial coefficient, 61
binomial distribution, 75, 76
binomial random variable, 76
boundary problems, 42

capacitor discharge, 40
characteristic equation, 52, 54
characteristic polynomial, 52, 54
combination, 60
combined continuous functions, 33
complex solution of a DE, 51
conditional probability, 67
continuity of multiple argument functions, 33
continuous random variable, 71
continuous sample space, 65
contour plot, 31
correlation, 75
countable sample space, 65
covariance, 74
creating differential equations, 43
cumulative distribution function, 71

damped harmonic oscillator, 53
DE in resonance, 58
DE, differential equation, 40
definite integral, 6, 7
deterministic process, 64
differential equation, DE, 40
directional derivative, 34
discrete random variable, 71
discrete sample space, 65
distribution function, 71
domain of integration, 7

effective voltage, 5

elementary integrals, 11
event, 65
expectation, 72
expectation operator, 72
explicit notation, 41
exponential distribution, 80
exponential random variable, 80
exponential source term if a DE, 56
extrema of multiple argument functions, 36

condition for, 37

finite sample space, 65
first fundamental theorem of calculus, 10
first order differential equations, 46

geometric interpretation, 46
free path, 81
frequentist probability, 66
function with n arguments, 30
fundamental theorem of calculus, 9

first, 10
second, 10

general plus particular solution, 48
general solution, 42
global extremum, 36
global maximum, 36
global minimum, 36
gradient, 35
gradient of a function, 35

half-life, 42
harmonic oscillator

damped, 53
simple, 42

Hessian matrix, 36
higher order hom. DE with const. coeff., 54
higher order inhom. DE with const. coeff., 55
homogeneous DE, 41

i.i.d., 75
implicit notation, 41
improper integrals, 20
indefinite integral, 10
independence of probabilities, 68
independent and identically distributed, 75
independent events, 68
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infinite sample space, 65
inhomogeneous DE, 41
initial value problems, 42
integrable function, 7
integrals with infinite domain, 20
integrals with infinite image, 20
integrand, 7
integration by parts, 24
integration by substitution, 21
integration of absolutes, 25
integration of complex conjugate poles, 27
integration of multiple real poles, 27
integration of rational functions, 26
integration of single real poles, 26
inverse derivative, 10

Jacobian matrix, 38

kinetic energy, 30

Lebesgue integration, 7
limits of integration, 7
linear combination of solutions of a DE, 51
linear congruential generator, 78
linear differential equation, 41
linear inhomogeneous DE, 48
local extremum, 36
local maximum, 36
local minimum, 36
lotto, 60, 61
lower limit, 7
lower sum, 6

maxima of multiple argument functions, 36
mean free path, 81
minima of multiple argument functions, 36
Monty Hall problem, 64
multiple argument function, 30
multiple partial derivative, 35
multiple value functions, 37
mutually exclusive, 66

nabla-operator, 35
normal distribution, 78
normal random variable, 78

ODE, ordinary differential equation, 41
order of the differential equation, 41
ordinary differential equation, ODE, 41
oscillator

damped harmonic, 53
simple harmonic, 42

parameter-function, 47
parametric plot, 30

partial derivative, 33, 34

partial differential equation, 41

partial fraction decomposition, 26

particular solution, 42

permutation, 60

Poisson distribution, 76

Poisson random variable, 76

polynomial source term of a DE, 55

primitive function, 10

probability, 64

probability axioms, 67

probability density function, 71

probability mass function, 71

product rule, 24

pseudo random number generator, 77

radioactive decay, 42

random variable, 71

Riemann integral, 7

Riemann sum, 6

root mean square, 17

saddle point, 37

sample, 65

sample space, 65

continuous, 65

countable, 65

discrete, 65

finite, 65

infinite, 65

uncountable, 65

Schwarz integrability condition, 36

second fundamental theorem of calculus, 10

second order hom. DE with const. coeff., 52

pair of complex conjugate constants, 52

two different real constants, 52

two equal real constants, 52

separation of variables, 46

separation of variables 1, 46

separation of variables 2, 47

simple harmonic oscillator, 42

source term, 51, 55

source term of an DE as a sum of functions, 57

standard deviation, 73

standard normal distribution, 78

standard normal random variable, 78

stochastic process, 64

sum of conditional probabilities, 68

surface area of spheres, 16

surface plot, 31

symmetry of second derivatives, 36

trigonometric source term of a DE, 57

94 August 15, 2022



uncountable sample space, 65
uniform distribution, 77
uniform random variable, 77
upper limit, 7
upper sum, 6

variation, 62
variation of parameters, 47
vector plot, 32
visualization of functions, 30
volume of cones, 16
volume of spheres, 16
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